
Behavior Metrics for Prioritizing Investigations of
Exceptions

Zack Coker∗, Kostadin Damevski†, Claire Le Goues∗, Nicholas A. Kraft‡, David Shepherd‡, and Lori Pollock§
Carnegie Mellon University∗, Virginia Commonwealth University†, ABB Corporate Research‡, University of Delaware§

Pittsburgh∗, Richmond†, Raleigh‡, Newark§, USA
{zfc, clegoues}@cs.cmu.edu∗, kdamevski@vcu.edu†, {nicholas.a.kraft, david.shepherd}@us.abb.com‡, pollock@udel.edu§

Abstract—Many software development teams collect product
defect reports, which can either be manually submitted or
automatically created from product logs. Periodically, the teams
use the collected defect reports to prioritize which defect to
address next. We present a set of behavior-based metrics that can
be used in this process. These metrics are based on the insight
that development teams can estimate user inconvenience from
user and application behavior in interaction logs. To estimate
user inconvenience, the behavior metrics capture important user
and application behavior after exceptions (the defects of interest
in our case). We validated these metrics through a survey of
how developers would incorporate the behavior metrics into their
prioritization decisions. We found that developers change their
priority of investigating an exception about 31% of the time
after including the behavior metrics in the priority decision.
These findings provide evidence that behavior metrics provide
a promising advance towards prioritizing application exceptions.

Index Terms—Bug Triage, Behavior Metrics, IDE Usage Data,
Exceptions, Stack Traces

I. INTRODUCTION

While developers try to fix as many bugs (application de-
fects) as possible before release, products commonly ship with
unresolved bugs [1]. Once these projects are released, users
and developers report product issues through bug reports [2].
Multiple prior investigations have found that large projects
have large backlogs of bug reports [3] and receive more
bugs than developers can address [4]. In these cases, the
development team has to triage bug reports [4]. Prior work
on bug triage has focused on assigning bugs to developers [5].
Other work has created techniques that automatically prioritize
bugs reports [2], [6], which recommend a bug fix order
to developers [6]. However, these automated prioritization
techniques suffer from accuracy problems [6], [7], so many
industrial teams still perform manual bug prioritization.

One step towards automating the bug prioritization process
is to automate crash reports, which are core dumps from appli-
cation crashes that are automatically sent to the application’s
developers [8]. Modern applications, such as the Windows op-
erating system [8] and Firefox [9], use automatic crash reports
to collect information about application failures. Automatic
reports often contain more than just crashes. Many applications
automatically report and collect a variety of runtime problems,
such as exceptions thrown by the application or assertion
violations. While automatic reports contain information that
helps developers fix application problems [10], developers

currently use metrics that may not accurately represent the
problem’s severity (the negative impact on the application’s
quality caused by the exception), such as the number of
exception instances and number of users affected [8].

In this paper, we focus on the exception prioritiztion subset
of the bug prioritization problem. As a target application, we
use RobotStudio1, an Integrated Development Environment
(IDE) for robotic applications. RobotStudio has over 8,000
users who used the application for a combined 25,000+ hours
each week of May 2016. The RobotStudio development team
follows an Agile process composed of sprints. At the outset
of each sprint, the RobotStudio product manager selects the
product’s exceptions for the team to investigate. That is, the
product manager receives automatic exception reports from
customers’ product instances and selects a subset of them
for the team to investigate further in each sprint. These
C# exceptions occur during the users’ interactions with the
application. The team’s developers then decide which of the
exceptions in the exception subset should be fixed first.

At present, the product manager often selects the exception
subset based on the number of exception instances and number
of users affected. However, many exceptions with different
severity produce similar results for the two metrics, and more-
over those metrics do not completely measure the quality of
RobotStudio as perceived by RobotStudio’s user base. Instead,
other factors, such as the severity of an exception for a user,
may also be informative when selecting exceptions.

Our insight is that the development team should factor user
inconvenience from exceptions into their triage decisions, to
estimate the exception’s severity. The development team col-
lects user interaction logs, which document the application’s
exceptions along with the user and application interactions
before and after exceptions. Such interaction logs could inform
estimates of the user inconvenience caused by different excep-
tions, leading the team to prioritize more severe exceptions.

Using this scenario as a guide, we propose to improve
the process of exception triage with behavior metrics, or
measurements of user and application response to application
problems as a proxy for the severity of the problems. While
behavior metrics are not necessarily application specific, we
focused our investigation on the exceptions thrown in Robot-
Studio. We calculated the behavior metrics from sequences

1new.abb.com/products/robotics/robotstudio



1 OnlineControllerRemove
2 AddVirtualController
3 Exception|Services.RobApi.RobApiException
4 ----EXCEPTION BEGIN----
5 at System.Runtime.CompilerServices.TaskAwaiter

.ThrowForNonSuccess(Task task)
6 ----EXCEPTION END----
7 AddedController
8 VirtualFlexPendant
9 RapidEditorShow

Fig. 1. A simplified excerpt from a RobotStudio interaction log. This excerpt
shows how exceptions are recorded in the interaction logs.

in RobotStudio interaction logs that could provide insights
into the degree in which exceptions imped user tasks (e.g.,
restarting RobotStudio soon after an exception).

We validated the behavior metrics with a survey of 12
RobotStudio developers. The survey investigated how par-
ticipants changed their priority of investigating exceptions
and their confidence in their priority evaluations after seeing
behavior metrics calculated from past interaction logs. We
found that developers considered the behavior metrics useful;
30.6% of respondents changed their exception investigation
priority answers after seeing the behavior metrics.

The contributions of this paper are:
• new metrics for prioritizing automatically generated ex-

ception reports based on user and application interactions
• survey results that demonstrate developers change their

ratings of an exception’s investigation priority and their
confidence in their priority assessments after the behavior
metrics were presented

The remainder of this paper is organized as follows. We first
present and motivate the behavior metrics (Section II). Then,
we explain how we validated the behavior metrics through a
survey (Section III) and present the survey results (Section IV).
Next, we discuss the threats to validity (Section V), related
work, (Section VI) and conclusions (Section VII).

II. BEHAVIOR METRICS

In this section, we first present an example interaction log
that we used to calculate the metrics (Section II-A). Then,
we describe the metric methodology and provide preliminary
definitions (Section II-B). Next, we motivate and define the
behavior metrics (Section II-C).

A. Interaction Logs

We calculate the behavior metrics from records of user-
application interactions before and after exceptions. The be-
havior metrics can be extracted from sequences of users’
interactions and application exceptions.

In our context, we use RobotStudio interaction logs to calcu-
late the behavior metrics. The RobotStudio development team
collects interaction logs to improve the product’s user interface
design with customer usage information. The interaction logs
contain the anonymized sequence of interactions between the
user and the product, which consist of actions taken by the
user and the application’s responses to these actions. From the

interaction logs, we can deduce the sequence of actions that
the user took before and after an exception, but not complete
information about the user’s or the system’s actions (e.g., the
interaction log will show a file was saved but not which file
was saved). While this imperfect information protects a user’s
privacy, the lack of detail prevents the reproduction of all
exceptions from only the information in the interaction logs.

Figure 1 shows a segment from a RobotStudio interaction
log. Interaction logs contain the list of actions performed
by the user in sequential order, shown in lines 1–2 and
7–9. The interaction logs also contain inline descriptions
of exceptions that occurred during execution. A simplified
exception description is shown in lines 3–6. This description
includes a message that describes the exception and the
stack trace of the exception. The exception type is com-
posed of the exception’s name, the second item on line
3 (Services.RobApi.RobApiException); and the exception’s
stack trace, shown on line 5.

B. Metric Methodology and Preliminary Definitions
Based on a manual analysis of a random 300 interaction log

subset of the 296,581 logs with exceptions that span over a 5-
month period, we identified 5 behavior patterns. Three of the
behavior patterns consist of user responses to an exception
(Single Restart, Multiple Restarts, and Repeat Action)
and two patterns indicate how the application responds to an
exception (Repeat Exception and Similar Exception).

Before specifying the behavior patterns, we present three
definitions. (1) A user action is an execution of an application
command, or state change, caused by the application’s user.
In Figure 1, user commands are lines 1–3 and 7–9. (2) A
session is all logged interactions from the time the user open
the application to the time the application’s process ends (i.e.,
user exits or application crashes). The interactions in a session
include user actions and application exceptions. Each log file
is a single session. (3) Exceptions are application errors that
are logged with a name and stack trace.

C. Metric Definitions
We created metrics to aid developers in the exception triage

process of a sprint. During the sprint process, development
teams can calculate these metrics from past interactions logs
to estimate how often an exception causes user inconvenience.
The metrics show how often user are impeded when working
with RobotStudio, which can be used to denote which excep-
tions are causing the greatest user inconvenience.

We define each behavior metric with its corresponding
behavior type. Each behavior metric shares the same name as
the behavior pattern used to calculate the metric. All behavior
patterns can extend across multiple user sessions.
Single Restart. This pattern occurs when the exception in
the interaction log is followed by at least one end of session
in the next 10 user actions. This pattern is a superset of the
Multiple Restarts pattern.
Multiple Restarts. This pattern occurs when the exception
in the interaction log is followed by >1 end of sessions in the
interaction logs for that user in the next 10 user actions.



Repeat Action. This pattern occurs when the last user action
before an exception occurred is repeated in the next 10 user
actions after the exception.
Repeat Exception. This pattern occurs when the same excep-
tion occurs in the next 10 user actions after the exception.
Similar Exception. This pattern occurs when a similar ex-
ception occurs within the next 10 user actions after the first ex-
ception. A Similar exception is an exception that has the same
exception name (e.g., Services.RobApi.RobApiException)
but different stack traces. This pattern is limited to similar
exceptions because, in this product, exceptions are more likely
to be caused by a similar exception.

We determined the 10 user actions in the behavior metrics
from manual inspection of the log files. This value may need
to be adjusted for different applications.

The behavior metric for an exception type corresponds to
two values: (1) the percentage and (2) the rank (examples in
Figure 2). We calculate the behavior metric percentage for an
exception type e and behavior pattern b using the equation:

number of e instances associated with b

number of e instances
(1)

This percentage is calculated over some time period, which
can be the full product history. In our case, we had data for
five months, so we limit the calculation to instances in that
five month period. We calculate the metric rank by ranking
the exception types in the data set by the behavior metric
percentage in descending order. Ties are allowed in the ranking
(2 exceptions with a metric percentage of 100% would both
be ranked 1st, the next highest would be ranked 3rd).

D. Goal of the Metrics

The goal of the metrics were to provide insight into user in-
convenience with exceptions to aid developers in the exception
prioritization process, not to make the decision for developers.
Each behavior metric was designed with a different scenario
in mind. Multiple restarts was designed to approximate
situations were users cannot do what they want to do without
encountering a session ending exception. Single restart was
designed to measure a less severe situation than multiple

restarts, where the exception causes a user to enter a state
that the user decides to fix by restarting the application. The
other metrics were designed to measure less severe situations.
Repeat action measures the situation where the user has
to repeat the failing action due to an exception. Repeat

exception measures the situation where the application enters
a bad state and continues to throw the same exception. Similar
exception measures when the application goes into a bad
state, where one exception causes another exception.

III. VALIDATION STUDY METHODOLOGY

In this section, we present the behavior metrics research
questions (Section III-A), the exceptions in the survey (Sec-
tion III-B), the survey methodology (Section III-C), and the
statistical tests in the evaluation (Section III-D).

A. Research Questions

We designed a survey to study the following set of research
questions to better understand the benefits of behavior metrics
when prioritizing exceptions.

RQ1: Do behavior metrics help developers prioritize which
exceptions to investigate first?

We created the metrics to assist in the exception triage
process in Section I. Thus, the actionability (the ability to make
an empirically informed decision based on the metrics’ values)
of the metrics was our most important validation criterion [11].
We evaluate the actionability of the metric by participants’
changes in investigation priority and confidence.

RQ2: Does developers’ behavior metric interpretation differ
based on experience with RobotStudio exceptions?

Past work has shown experienced developers respond dif-
ferently than novice developers to different development sit-
uations [12]. These results in similar circumstances suggest
differences in a developer’s RobotStudio exception experience
may cause different behavior metrics interpretations.

RQ3: Do developers consider certain metrics more influen-
tial than others when determining investigation priority?

Prior work has found that certain metrics are more useful
than other metrics in different situations (e.g. defect predic-
tion [13]). Thus, we investigated whether certain metrics were
more influential using participants’ selected change reasons.

RQ4: What causes developers not to change priority after
incorporating the behavior metrics in their priority decisions?

While the behavior metrics should assist developers when
making priority decisions, the metrics will probably not be the
only factor when developers make their final priority decisions.
For example, developers may consider the information in the
stack trace to be more influential than the behavior metrics
for certain exceptions. Past work has found that developers
consider stack traces to be one of the most important aspects
of a bug report [14]. Behavior metrics could also add support
for a developer’s initial priority determination.

B. Selected Exceptions For Survey

In this subsection, we first present the exceptions in the data
set and then explain the selection process for the exceptions
in the survey. We present the exception information for two
reasons: (1) to provide intuition about how the metrics are
distributed across exceptions from a sample data set, which
may provide insight when applying the metrics to a new data
set, and (2) to show the metrics for the selected exceptions,
which influenced participants’ survey answers. In this section,
we also explain the steps taken to reduce participants’ bias
due to the selected exceptions.
Exception Types and Behavior in Whole Dataset. To
aid in understanding how the metrics apply to a real-world
system, we present the distributions of the metrics across
the exceptions in the RobotStudio data set. We filtered the
6,982 exception types in the data set to the exceptions with
100 or more instances to prevent exceptions with a low
occurrence rate from skewing the distributions. After filtering
the exceptions, we were left with 470 exception types. We



Users Single Multiple Repeat Repeat Similar
Instances Affected Restart Restarts Action Exception Exception

Exception # rank # rank % rank % rank % rank % rank % rank

1 RobApi 508 163 122 110 16 388 5 362 100 1 1 375 0 94
2 RobApi 333 221 224 47 16 385 5 366 6 444 2 357 0 53
3 ProductInstallationFailed 1,205 85 220 51 73 88 53 26 27 380 61 10 1 27
4 TypeInitialization 942 97 121 113 89 45 62 14 99 148 44 41 1 35
5 RobApi 196 316 151 90 10 424 2 414 100 1 0 413 0 94
6 NullReference 326 226 165 75 100 1 24 194 1 436 10 236 0 52
7 NullReference 280 251 109 128 100 1 33 108 19 405 3 325 0 94
8 ProductInstallationFailed 482 175 105 134 66 120 37 81 38 351 64 7 1 32
9 TypeInitialization 1,981 53 239 43 87 50 67 9 100 131 49 27 1 32

10 Argument 182 330 105 134 5 440 1 430 3 450 0 413 0 94
11 RobApi 507 165 330 28 98 27 39 68 24 384 5 296 3 10
12 InvalidOperation 58 177 116 1756 99 24 36 87 79 249 2 340 4 6

Fig. 2. The exceptions presented in the survey. We numbered the exceptions to differentiate exceptions with the same name but a different stack trace. # are
the number of users affected (Users Affected column), and total exception instances (Instances column). % means the percentage of total exception instances
associated with the behavior patterns (all columns with %). rank in the Instances column denotes the position of the exception when all exceptions are ordered
by most to least instances. For the other columns, rank denotes the position of the exception when all exception types are ordered from the highest to lowest
percentage (e.g., rank in Users Affected means the position when exceptions are ordered by number of users affected). Ties are permitted in the rank (further
explained in Section II-C).

Fig. 3. The distributions of behavior metric percentages in the data set shown
through a scatter plot. Each distribution is independently sorted, so the first
exception type identifier is the lowest percentage for each distribution, and
not the same exception type in each distribution.

first show the distribution of the percent of users affected by
the filtered exceptions to provide contrast with a metric used
in prior work [8], [9] and RobotStudio. Figure 3 shows the
scatter plot for the percent of users affected and the behavior
metric percentages for different exception types in the data set.
Notice that the user response patterns occur more frequently
than the application response patterns.

Table I shows the correlation between the different be-
havior metric percentages in the data set. These correlation
results show only single restart and multiple restarts

Spearman Rho p-value

single restart multiple restarts 0.848 <0.001

TABLE I
THE STATISTICALLY SIGNIFICANT (<0.05), POSITIVELY CORRELATED
(>0.7) SPEARMAN RHO CORRELATIONS BETWEEN BEHAVIOR METRIC

PERCENTAGES IN THE DATA SET.

PCA Component % of Variance
single multiple repeat repeat similar Explained by
restart restarts action exceptions exceptions Component

-0.332 -0.216 0.885 -0.246 0.004 51.912
0.805 0.442 0.394 -0.055 0.013 35.082
0.143 0.159 0.247 0.945 -0.010 9.198

-0.472 0.856 -0.025 -0.209 0.007 2.953
0.007 0.009 0.006 -0.012 -1.000 0.856

TABLE II
THE EXPLAINED VARIANCE OF THE COMPONENTS GENERATED BY

PRINCIPLE COMPONENT ANALYSIS ON THE BEHAVIOR METRIC
PERCENTAGES IN THE DATA SET. THE FIRST TWO COMPONENTS, WHICH
CONSIST OF THE FIRST FOUR METRICS, ACCOUNT FOR ABOUT 87% OF

THE DATA’S VARIANCE.

are highly correlated, which is expected because single

restart is a superset of multiple restarts. Table II shows
the explained variance of the different components produced
by a Principle Component Analysis (PCA) [15] of the data set.
The PCA results show the fist two components explain about
87% of the variance in the data set. The results also show the
similar exception metric explains very little variance (<1%)
and may be redundant.
Exception Types used in Survey. We determined the survey
length through a multi-step process. We were interested in
documenting participants’ priority and confidence changes for
exceptions that were high in individual behavior metrics. For
comparison, we also needed exceptions that were not high in
any of the metrics. Thus, we had six exception categories of
interest: one that was high in each of the behavior metrics
and one control group (i.e., not high in any of the metrics).
After performing preliminary tests of the survey, we found



Spearman Rho p-value

single restart multiple restarts 0.958 <0.001
repeat exception 0.884 <0.001

mulitple restarts repeat exception 0.933 <0.001

TABLE III
THE STATISITICALLY SIGNIFICIANT (<0.05), POSITIVELY CORRELATED
(>0.7) SPEARMAN RHO CORRELATIONS BETWEEN BEHAVIOR METRIC

PERCENTAGES IN THE PRESENTED EXCEPTIONS.

PCA Component % of Variance
single multiple repeat repeat similar Explained by
restart restarts action exceptions exceptions Component

-0.614 -0.402 -0.631 -0.253 -0.010 89.103
0.222 -0.362 0.349 -0.834 0.054 6.748
0.723 -0.028 0.681 -0.102 0.052 4.027
0.210 -0.829 0.129 0.478 0.142 0.119
0.089 -0.142 0.009 0.026 -0.986 0.000

TABLE IV
THE EXPLAINED VARIANCE OF THE COMPONENTS GENERATED BY
PRINCIPLE COMPONENT ANALYSIS ON THE PRESENTED BEHAVIOR

METRIC PERCENTAGES. A MAJORITY (89%) OF THE PRESENTED
EXCEPTION VARIANCE IS EXPLAINED BY THE FIRST COMPONENT, WHICH

MAINLY CONSISTS OF THE FIRST FOUR METRICS.

participants could answer the questions for an exception in
about two minutes. To be respectful of participants’ time, we
created a survey that could be finished in under 30 minutes.
This time limit restricted the survey to 12 exceptions (out of
470 in the data set), 2 for each of the 6 exception categories.
These 12 exceptions are shown in Figure 2.

We selected the 12 exceptions in the survey based on
the exceptions’ behavior metrics. To reduce the effect of the
number of users affected by the exception type on participants,
we first filtered the exceptions in the data set to exceptions
which affected between 1–2% of the total RobotStudio users
in the data set. We filtered the exceptions to only include
exceptions that were in the top 5% percent for an indi-
vidual behavior metric. Then, we narrowed the list to two
exceptions for each behavior metric by selecting the two
exceptions that had the lowest sum for the other behavior
metric percents (i.e., 4TypeInitializationException and
9TypeInitializationException for Muiltple Restarts).
The two exceptions in the category without a behavior metric
were selected by taking the two exceptions with the lowest sum
of all the behavior metric percents (i.e., 2RobApiException and
10ArgumentException). When we presented the exceptions in
the survey, we presented all of the behavior metrics for each
exception, not just the metrics used to select the exceptions.

One drawback of this approach was the high correlation
between the metrics in the chosen exceptions. Table III shows
the correlations between the presented exceptions and Table IV
shows the PCA components of the behavior metric percent-
ages in the presented exceptions. These tables demonstrate
the high correlation between Multiple Restarts, Single

Restart, and Repeat Action in the presented exceptions.

Exception Question Set #1
Exception Type, Exception Instances, and Users Affected

1. Please select the priority you would put on further investigating
this exception.

Investigate as soon as possible, Investigate in the next sprint,
Investigate soon but after next sprint, Investigate when you have
time, Ignore

2. Please rate your confidence in your survey answers.

High confidence, Moderate confidence, Low confidence, No
confidence

Exception Question Set #2
Exception Type, Exception Instances, Users Affected, and Behavior
Metrics

3. Does the new information change your opinion about the
exception’s investigation priority?

Yes, No

If the participant selected Yes:
4. Please select the recalculated investigation priority.

Investigate as soon as possible, Investigate in the next sprint,
Investigate soon but after next sprint, Investigate when you have
time, Ignore (without the ability to select their previous
investigation priority)

5. Why did you choose that investigation priority?

The number of multiple restarts, The number of single restarts, The
number of repeat actions, The number of repeat exceptions, The
number of similar exceptions
Other: (free-form response)

6. Which option best describes what influenced your investigation
priority selection?

Only the new information was used, The new information influenced
the decision more than the old information, The new and old
information were equally important, The old information influenced
the decision more than the new information

7. Please rate your confidence in your answers above.

High confidence, Moderate confidence, Low confidence,

If the participant selected No:
8. Why did your opinion not change?

The new information reinforces the old information, Users affected
are more important, Harmful exception instances are too rare, The
exception type seems harmless
Other: (free-form response)

9. Please rate your confidence in your answers above.

High confidence, Moderate confidence, Low confidence

Fig. 4. The exception survey questions.

C. Survey Structure

In this subsection, we first explain the survey setting. We
then explain the layout of the survey and the survey questions.
Survey Setting. We created an online survey for the 17 ABB
Inc. developers of RobotStudio. The survey asked RobotStudio
developers how their assessment of an exceptions’ investi-
gation priority would change due to behavior metrics, with
the goal of addressing the research questions presented in
Section III-A. We received 12 survey responses. Participants’
RobotStudio development experience ranged from 0 to 17
years, with a mean of 6.4 years.
Survey Layout. The survey started with an explanation of the
survey’s organization and how to take the survey, followed by
questions which asked participants about their experience with



RobotStudio and RobotStudio exceptions. Then the survey
presented the 12 exceptions in a random order. Finally, the
survey concluded by asking participants whether anything
else could be done to improve their evaluation of exceptions’
investigation priorities and thanked them for completing the
survey. In total, the survey contained a maximum of 85 closed-
ended questions and 14 open-ended questions.

For each exception, the survey initially presented infor-
mation that the developers currently used to determine the
exception’s investigation priority: the type of the exception, the
stack trace, the number of users affected by the exception, and
the number of exception occurrences. After we presented this
exception information to participants, we asked participants to
select the priority of investigating the exception. The possible
options were on a Likert scale [16] with five categories (survey
question 1). Participants were also asked how confident they
were in their selection using a Likert scale with four categories
(survey question 2). The first set of exception questions are
shown in Figure 4. Participants were only able to select one
answer for each question in this set.

Once participants answered these questions, the survey
presented the behavior metrics for that exception and asked
the second set of exception questions. These questions asked
participants whether the new information changed their pri-
ority of investigating the exception (survey question 3). If
participants changed their priority of investigation based on
the behavior information, then participants were asked to
select the new priority of investigation (survey question 4),
provide a reason for the change (survey questions 5 and 6),
and select their confidence in the new investigation priority
(survey question 7). If participants did not have a priority of
investigation change, then participants were asked to provide a
reason for not changing their priority (survey question 8) and
their confidence in their no priority change decision (survey
question 9). We present the second set of exception questions
in Figure 4. Participants were only able to select one answer
for survey questions 3, 4, 7, and 9. Participants were able to
select multiple options for survey questions 5, 6, and 82.

D. Statistical Tests in Survey Evaluation

For RQ1, we wanted to evaluate if the behavior met-
rics caused participants to change their investigation priority
and confidence. Thus, use the Wilcoxon signed rank test,
which evaluates if two samples from the same population
have statistically significant different distributions (between-
subject) [17]. For RQ2, we investigated if experience influ-
ences investigation priority and confidence rating. To evaluate
this question, we use the Wilcoxon rank sum test, which
evaluates if two independent populations came from statisti-
cally significant distributions (within-subject) [18]. We also
investigated the correlation between experience and survey
changes. The Spearman’s rank correlation coefficient [19]
measures the statistical significance of the correlation between

2survey: https://whispering-meadow-68629.herokuapp.com/

to variables. For all the statistical tests, we use a p-value of
<0.05 to determine significance.

IV. RESULTS

In this section, we discuss the survey results. We show
how behavior metrics cause priority and confidence changes
(Section IV-A) and how experience affects how developers
use the metrics (Section IV-B). We then discuss the reasons
developers gave for making changes (Section IV-C), and the
reasons for not making changes (Section IV-D).

A. Behavior Metrics Cause Priority And Confidence Changes

For RQ1 (Do behavior metrics help developers prioritize
which exceptions to investigate first?), we investigate whether
participants change their priority of investigation evaluations
after accounting for the behavior metrics. Figure 5 shows
how participants changed their priority of investigation (from
survey question 1 to survey question 4) after incorporating
the behavior metrics into the priority decision. Figure 5 also
shows how participants changed their confidence (from survey
question 2 to survey question 7 or 9) after incorporating the
behavior metrics. While two participants reported having no
priority or confidence changes due to the behavior metrics,
those participants also reported inexperience with RobotStudio
and RobotStudio exceptions. The effects of experience on
participants’ answers are further discussed in Section IV-B.

We found that participants change their original priority
evaluations (survey question 1) 30.6% (44/144) of the time.
75% (33/44) of those changes were increases in priority while
25% (11/44) were decreases in priority. The behavior metrics
caused participants to change their original confidence (survey
question 2) 33.3% (48/144) of the time. 75% (36/48) of those
changes were increases in confidence while 25% (12/48) were
decreases in confidence. These results suggest that participants
found behavior metrics useful.

Developers commonly adjusted their priority and confidence
based on the behavior metrics. If values are assigned to the
different priorities (0 for ignore, 1 for free-time, etc.) in
survey questions 1 and 4, then there was a significant priority
difference before and after developers were presented behavior
metrics. The mean original priority (survey question 1) and
mean final priority (survey question 4 or when developers kept
the same priority by answering No to survey question 3) were
similar, 2.0 and 2.2 respectively. However, there was a signif-
icant difference between the two samples. A Wilcoxon signed
rank test showed the original and final priority selections are
drawn from different distributions with a high probability,
W = 247.5, p < 0.05, r = 0.62. These results provide
evidence that participants found behavior metrics useful when
determining the priority of investigating exceptions.

Confidence changes also occurred after the behavior metrics
were presented. Different confidence answers were assigned
different scores (0 for none, 1 for low, etc.). The mean of
the original confidence (survey question 2) was 1.9 and the
mean of the final confidence (survey question 7 or 9) was 2.1.
A Wilcoxon signed rank test showed the original confidence



Fig. 5. Left: The priority changes of all survey participants after factoring in the behavior metrics. Right: The confidence changes of all survey participants
after factoring in the behavior metrics. For both graphs, the number of changes is shown as the length of the bar while the magnitude of the changes is shown
as the color of the bar. The change values are calculated using the conversion discussed in Section IV-A.

and final confidence distributions are different with statistical
significance W = 246, p < 0.05, r = 0.75. The confidence
changes provide evidence that participants considered the
behavior metrics useful when they made priority judgments.

Developers provided multiple comments that indicate they
took the behavior metrics into account.

“If the users restarts in high frequency, this error must be
annoying. [sic]”

“When I saw the low number of repeats etc. I changed my
mind a bit. If very few users are affected and the problem just
happens ‘once’ then it’s not so important after all. [sic]”

“The rating of restarts is very high. This could mean we
should look into it before [the next] sprint.”
In total, 27% (10/37) of participants’ comments mentioned
using behavior metrics in their decisions. When participants
selected how the new and old information was factored into
their change decisions (survey question 6), 70% (31/44) of
the selected answers stated that the new metrics were more
important than the old metrics. Based on the result in this
section, we conclude that developers find the behavior metrics
useful when investigating the priority of exceptions.

B. Effects of Developers’ RobotStudio Exception Experience

RQ2 states — Does behavior metrics interpretation differ
based on RobotStudio exception experience? We investigated
this question by separating the participant responses based on
their experience with RobotStudio exceptions.

Figure 6 shows the priority of investigation and confidence
changes from the behavior metrics grouped by experience with
RobotStudio exceptions. Six developers who reported none,
very little, or some experience with RobotStudio exceptions
were grouped into the less-experience category. The other
six developers (who reported quite a bit or very much) were
grouped into the more-experienced category. This graph shows
developers with more experience had more investigation prior-
ity and confidence changes. Less experienced participants were
more likely to change their investigation priority than their
confidence. More experienced participants were more likely
to change their confidence than their investigation priority.

Fig. 6. A box-and-whisker plot of participant’s investigation priority and con-
fidence changes grouped by reported experience with RobotStudio exceptions.
The change values are calculated using the conversion in Section IV-A.

To determine the independence of the metric interpretations
based on experience, we calculated the Wilcoxon rank sum
test [18] between the priority changes of participants with
more experience and participants with less-experience. A
Wilcoxon rank sum test showed there was not a statistically
significant difference between the priority changes of more-
experienced and less-experienced participants. We next cal-
culated the Wilcoxon rank sum test between the confidence
changes of participants with more experience and participants
with less-experience. A Wilcoxon rank sum test showed the
effect between the confidence changes of more-experienced
participants and less-experienced participants to be W = 4.5,
p < 0.05, r = 0.64. These results show there is a statisti-
cally significant difference in the number of a participant’s
confidence changes between more and less-experienced par-
ticipants. These results provide further evidence that more-
experienced developers reconsidered their confidence changes
more frequently after accounting for the behavior metrics.

To better understand the relationship between experience



and metric interpretation, we investigated the correlation be-
tween participants’ experience and their survey changes. We
performed a Spearman’s correlation [19] between participants’
exception experience and their number of investigation priority
changes. To calculate the Spearman’s correlation, we converted
the participants’ exception experience to a 0–4 scale, which
corresponded to the participants’ selected experience. There
was a weak positive and not statistically significant correlation
between participants’ exception experience and the number
of their investigation priority changes, rs = 0.245, p =
0.442. We also performed a Spearman’s correlation between
participants’ exception experience and the number of their
confidence changes, and we found a statistically significant,
positive correlation (rs = 0.771, p = 0.003). Since experience
changes were correlated with exception experience, we were
curious whether participant’s confidence increased as their
exception experience increased. Thus, we performed a Spear-
man’s correlation between participants’ exception experience
and their increases in total confidence (a single ordinal increase
in confidence for an exception cancels out another single
ordinal decrease); and we found a not statistically significant,
weak correlation (rs = 0.211, p = 0.511). These results show
that experience was strongly associated with the number of
confidence changes, but we cannot make conclusive claims
about the correlation between the number of priority changes
or increases in total confidence and exception experience.

These results suggest more experience correlates with
changes in behavior metric interpretation. As participants
become more experienced with RobotStudio exceptions, par-
ticipants are more likely to change their confidence than
their investigation priority. Participants with more exception
experience also had more confidence change, but did not have
a statistically significant increase in total confidence.

C. Reasons for Changes

For RQ3, Do developers consider certain metrics more
influential than other metrics when determining investigation
priority?, we investigated the reasons that participants gave
for investigation priority changes and created a ranking that
averaged the participants’ final investigation priority. We found
that only two participants consistently changed their investi-
gation priority based on any of the behavior metrics or pattern
counts. Instead, participants commonly gave multiple reasons
for investigation priority changes. If each presented option and
the free response (survey question 5) all count for a single
reason each, then developers had 64 reasons for increasing
the investigation priority of 33 exception instances, an average
of about 2 reasons per increased exception. When prioritizing
exceptions after factoring in the behavior metrics, participants
consistently considered the exceptions that were not high for
any of the metrics, or only high in the repeat action metric,
as low priority exceptions. Based on these results, it seems that
participants consider the repeat action metric to be relatively
unimportant by itself. Further investigations will be required
to determine the influence of the other metrics.

To investigate participant consistency, we also investigated
how participants changed investigation priority based on the
behavior metrics. We evaluated whether participants created
a threshold for the metrics, (e.g., the participant changed
the investigation priority for all exceptions with a single

restart percentage higher than 80%). For each metric, we
determined three possible thresholds: (1) the behavior pattern
counts (2) the metric percentage (3) the metric rank (the
metric percentage and metric rank are shown in Figure 2). We
calculated the three thresholds as the largest (1 and 2) or best
(3) value from exceptions that the participant did not change
the exception’s investigation priority. We then compared the
thresholds to exceptions where the participant specified that
metric as a reason for an investigation priority change. If a
participant changed all exceptions that were better than any of
the three thersholds, then a participant was consistent.

We found that only two participants were consistent accord-
ing to this approach: one participant consistently changed the
investigation priority when the exception’s single restart

instances were above a threshold, and another participant
consistently changed the investigation priority when the ex-
ception’s repeat action instances were above a threshold.
Participants did not consistently change exceptions’ investiga-
tion priority in all other cases. We speculate that these results
show participants assessed these metrics as a group when
making investigation priority changes and that participants
were influenced by other exception information.

When participants had a priority change, 70% (31/44) of
the participants’ responses contained 2 or more reasons for
the change. Certain metrics were often selected together.
Single restart was selected in 12 of the total 15 (80%)
instances where repeat action was selected. When multiple

restarts was selected (17 instances), it was paired with
single restart 71% of the time (12/17).

When we filtered the responses to the responses that
increased priority, Single restart was the most common
reason for increasing priority (20 of the 64 selected increase
reasons), while multiple restarts and repeat action were
tied for the second (both 14 of the 64 increase reasons). These
three reasons captured 75% (48/64) of all the reasons selected.
Participants selected these reasons when the corresponding
metric was high for a particular exception.

Of the 30 reasons provided for decreasing the investigation
priority of 11 exception instances, over a third of the reasons
selected were repeat exception (11/30). Participants selected
this behavior metric when it was low for an exception.

When we averaged the selected investigation priority, we
found that participants consistently ranked two groups of
exceptions at the bottom of their priority range: the excep-
tions that were not high in any metrics (2RobApiException
and 10ArgumentException), and exceptions that only had
a high repeat action metric score (1RobApiException and
5RobApiException). This suggests that a high repeat

action metric was not important enough by itself to pro-
duce a high investigation priority. While the exceptions
with high similar exception scores (11RobApiException and



12InvalidOprationException) were in the group of higher
priority exceptions, the results do not seem to indicate that
participants responded to the similar exception metric, and
instead responded to other correlated metrics. The similar

exception metric was selected as the reason for improving the
investigation priority three times (the lowest of the metrics)
and these exceptions also had high single restart metric
scores, so it seems that participants considered other metrics
when prioritizing those exceptions.

D. No Change Reasons

We looked into the reasons participants provided for not
changing their exception priority to answer RQ4: What causes
developers not to change priority after incorporating the
behavior metrics in their priority decisions? To answer this
question, we asked participants why their priority decision
did not change (survey question 8). We found the most
common reason (67 out of the 100 exceptions for which partic-
ipants priority did not change) was that the new information

reinforces the old information. The next most common
reason (22/100) was participants considered the information
in the exception type to be more important. For example,
participants comments about the exception type included:

“TypeInitializationExceptions are almost always indications
that something has gone very wrong.”

“NullReference exceptions are always programming errors
and should be fixed immediately”

“Seems that the user is closing a station, can be when
closing [RobotStudio]. If so get a exception when closing a
application is not a severe as having a exception during work.
[sic]”
These results indicate the behavior metrics reinforced partic-
ipants initial priority decisions for most exceptions and the
exception type was important for priority decisions.

V. THREATS TO VALIDITY

External Validity. The general concept of using behavior
patterns after exceptions to estimate user impediment should
generalize to other applications. However, the metrics col-
lected in this paper may not generalize. For example, other
applications may have new exception behaviors which require
new behavior patterns. Some participants’ survey answers are
due to RobotStudio specific information, so the conclusions in
the survey may not apply to another application.
Internal Validity. Through survey trials, we determined that
the presented exception order may affect participants’ ex-
ception handling priority responses; survey respondents may
change their definition of the different investigation priority
categories as they see more exceptions. To mitigate this risk,
we presented the exceptions in the survey in random order.
Also, the presented exceptions may influence our results. We
reduced this risk through our exception selection process and
present correlation statistics to make any correlations clear to
the reader. Another threat to internal validity is that one partic-
ipant reportedly took the survey twice, but we were unable to
remove the second response due to response anonymization.

Another possible threat is averaging ordinal data, which may
lead to false conclusions if the distance between the ordinal
categories are too skewed. We tried to reduce this threat by
choosing categories which we postulate have similar distance,
although we did not verify this assumption. Finally, another
possible threat is the way we determined the exception types.
We used the definition of an exception type that the RobotStu-
dio development team is using in practice, but other definitions
of exceptions types may lead to different results.
Construct Validity. The metrics that we present may not
completely measure the severity of the exception. Repeating
some actions may indicate a more severe exception than
other actions, although the metrics cannot discern this. The
metrics may also produce incorrect severity measurement
in certain situations. For example, if the exception always
silently occurs in the shutdown process, the single restart

numbers may indicate a more severe problem than what users
experience. These metrics also assume a product with a large
user base. Further investigation will have to determine whether
the metrics work well for products with a small user base.
Conclusion Validity. Twelve participants may not be a large
enough sample to draw definitive conclusions about how these
metrics will be interpreted by developers. If the sample was too
small, there is greater risk of type II errors (the collected data
misses real relationships in the studied phenomenon). There
is also the possibility that investigating multiple questions for
the same data set led to type I errors (incorrect relationship
conclusions caused by chance). Future work can investigate the
impact of these threats and reduce any negative consequences.

VI. RELATED WORK

Related work can be divided into three categories: (1)
approaches for organizing and prioritizing bug reports using
stack traces (2) bug triage, and (3) uses of large-scale behav-
ioral data for software maintenance.

The closest work to ours are those on prioritizing bug
reports using stack traces. These works have investigated stack
traces on an individual basis and prioritized exceptions by the
number of occurrences [8], but they have not considered any of
the metrics proposed in this paper. Another stack prioritization
work created metrics to identify the failing methods in stack
traces [20], such as function frequency and the function’s lines
of code. Other techniques have focused on accurately grouping
reports triggered by the same bug [21], [22].

While we focus on triaging application exceptions, related
work has focused on triaging bug reports. Past work in
bug report triage has found that filtering bug reports by tag
makes prioritizing bug reports faster [3]. Other work has
found that crash reports can be effectively prioritized by the
number of users affected and the distribution of crash types
across users [9], or path similarity metrics and path alignment
metrics [23]. Microsoft has also investigated how to prioritize
specific bug types, such as performance bugs [24]. A recent
survey by Uddin [6] provides a comprehensive overview of
bug prioritization techniques, but none of these works use
behavior metrics to prioritize investigating exceptions.



Several popular IDEs, such as Eclipse, have released simi-
lar data without exceptions, enabling research in developers
behavior, such as preferred IDE views [25], code search
commands [26], refactoring commands [27], and high-level
debugging behavior [28]. While IDE data has been used in
many contexts, our work explores the under-investigated area
of user behavior and application exceptions in logs.

VII. CONCLUSION

We have presented behavior metrics, which calculate user
and application responses to exceptions, designed to aid in the
triage process. These metrics are single restart, multiple
restarts, repeat action, repeat exception, and similar

exception. We have created these metrics from the logs of an
industrial application with thousands of users: RobotStudio.

Through a survey of RobotStudio developers, we deter-
mined that developers find the behavior metrics useful when
estimating an exception’s investigation priority. After consid-
ering behavior metrics in their evaluation, developers changed
their investigation priority 30.6% of the time. We found that
developers with more experience had a higher confidence
change rate after incorporating behavior metrics in their evalu-
ation and a slightly increased total confidence. We also found
that developers often consider these metrics to reinforce their
initial investigation priority decisions. Based on these results,
we conclude that developers found the behavior metrics useful.

In the future, more work could be conducted to explore
how well the behavior metrics generalize to different contexts.
Future work could also investigate how to present behavior
metrics in the most insightful way, and determine a way
to use these metrics in an automated triage process. While
these metrics are an important step in using behavior to triage
application problems, these metrics will need to be studied
further before these metrics are widely used.

VIII. ACKNOWLEDGEMENTS

This material is based upon work supported by ABB Inc.
and the National Science Foundation Graduate Research Fel-
lowship Program under Grant No. DGE1252522. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation or ABB.

REFERENCES

[1] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via
remote program sampling,” in Conference on Programming Language
Design and Implementation, ser. PLDI ’03, 2003, pp. 141–154.

[2] G. Yang, T. Zhang, and B. Lee, “Towards semi–automatic bug triage
and severity prediction based on topic model and multi–feature of
bug reports,” in Computer Software and Applications Conference, ser.
COMPSAC ’14, 2014, pp. 97–106.

[3] G. Bortis and A. van der Hoek, “Porchlight: A tag-based approach to
bug triaging,” in International Conference on Software Engineering, ser.
ICSE ’13, 2013, pp. 342–351.

[4] Z. Jie, W. XiaoYin, H. Dan, X. Bing, Z. Lu, and M. Hong, “A survey on
bug-report analysis,” SCIENCE CHINA Information Sciences, vol. 58,
no. 2, pp. 1–24, 2015.

[5] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug
tossing graphs,” in Foundations of Software Engineering, ser. FSE ’09,
2009, pp. 111–120.

[6] J. Uddin, R. Ghazali, M. M. Deris, R. Naseem, and H. Shah, “A survey
on bug prioritization,” Artificial Intelligence Review, vol. 47, no. 2, pp.
145–180, Feb. 2017.

[7] A. J. Ko, B. A. Myers, and D. H. Chau, “A linguistic analysis of
how people describe software problems,” in Proceedings of the Visual
Languages and Human-Centric Computing, ser. VLHCC ’06, 2006, pp.
127–134.

[8] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. Hunt, “Debugging in the (very)
large: ten years of implementation and experience,” in Operating Systems
Principles, ser. SIGOPS ’09, 2009, pp. 103–116.

[9] F. Khomh, B. Chan, Y. Zou, and A. E. Hassan, “An entropy evaluation
approach for triaging field crashes: A case study of mozilla firefox,” in
Working Conference on Reverse Engineering, ser. WCRE ’11, 2011, pp.
261–270.

[10] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Characteriz-
ing and predicting which bugs get fixed: An empirical study of Microsoft
Windows,” in International Conference on Software Engineering, ser.
ICSE ’10, 2010, pp. 495–504.

[11] A. Meneely, B. Smith, and L. Williams, “Validating software metrics: A
spectrum of philosophies,” ACM Transactions on Software Engineering
and Methodology, vol. 21, no. 4, pp. 24:1–24:28, Feb. 2013.

[12] R. Latorre, “Effects of developer experience on learning and applying
unit test-driven development,” IEEE Transactions on Software Engineer-
ing, vol. 40, no. 4, pp. 381–395, Apr. 2014.

[13] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Transactions on Software
Engineering, vol. 33, no. 1, pp. 2–13, Jan. 2007.

[14] N. Bettenburg, S. Just, A. Schrter, C. Weiss, R. Premraj, and T. Zim-
mermann, “What makes a good bug report?” in Foundations of Software
Engineering, ser. FSE ’08, 2008, pp. 308–318.

[15] T. M. F. Taha, E. Shomo, N. E. Oweis, and V. Snasel, “Feature selection
by principle component analysis for mining frequent association rules,”
in Intelligent Information Technologies for Industry, ser. IITI ’16, 2016,
pp. 99–109.

[16] “Likert scale,” April 2017. [Online]. Available:
http://academic.eb.com/levels/collegiate/article/Likert-scale/605393

[17] D. Rey and M. Neuhäuser, “Wilcoxon–signed–rank test,” in Interna-
tional Encyclopedia of Statistical Science, M. Lovric, Ed., 2011, pp.
1658–1659.

[18] M. Neuhäuser, “Wilcoxon–mann–whitney test,” in International Ency-
clopedia of Statistical Science, M. Lovric, Ed., 2011, pp. 1656–1658.

[19] T. W. MacFarland and J. M. Yates, Spearman’s Rank-Difference Coef-
ficient of Correlation. Introduction to Nonparametric Statistics for the
Biological Sciences Using R, 2016, pp. 249–297.

[20] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “CrashLocator: locating
crashing faults based on crash stacks,” in International Symposium on
Software Testing and Analysis, ser. ISSTA ’14, 2014, pp. 204–214.

[21] T. Dhaliwal, F. Khomh, and Y. Zou, “Classifying field crash reports
for fixing bugs: A case study of Mozilla Firefox,” in International
Conference on Software Maintenance, ser. ICSM ’11, 2011, pp. 333–
342.

[22] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel, “ReBucket:
A method for clustering duplicate crash reports based on call stack
similarity,” in International Conference on Software Engineering, ser.
ICSE ’12, 2012, pp. 1084–1093.

[23] V. Akila and G. Zayarz, “Novel metrics for bug triage,” Journal of
Software, vol. 9, no. 12, pp. 3035–3040, 2104.

[24] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie, “Performance debugging
in the large via mining millions of stack traces,” in International
Conference on Software Engineering, ser. ICSE ’12, 2012, pp. 145–155.

[25] G. Murphy, M. Kersten, and L. Findlater, “How are Java software
developers using the Elipse IDE?” IEEE Software, vol. 23, no. 4, pp.
76–83, 2006.

[26] K. Damevski, D. Shepherd, and L. Pollock, “A field study of how devel-
opers locate features in source code,” Empirical Software Engineering,
vol. 21, no. 2, pp. 724–747, Apr. 2016.

[27] M. Vakilian and R. E. Johnson, “Alternate refactoring paths reveal us-
ability problems,” in International Conference on Software Engineering,
ser. ICSE ’14, 2014, pp. 1106–1116.

[28] K. Damevski, H. Chen, D. Shepherd, and L. Pollock, “Interactive
exploration of developer interaction traces using a hidden markov
model,” in International Conference on Mining Software Repositories,
ser. MSR ’16, 2016, pp. 126–136.


