
Managing Uncertainty in Self-Adaptive Systems with Plan Reuse
and Stochastic Search

Cody Kinneer
School of Computer Science,
Carnegie Mellon University

Pittsburgh, PA
ckinneer@cs.cmu.edu

Zack Coker
School of Computer Science,
Carnegie Mellon University

Pittsburgh, PA
zfc@cs.cmu.edu

Jiacheng Wang
Computer Science Department,

Dickinson College
Carlisle, PA

wangjia@dickinson.edu

David Garlan
School of Computer Science,
Carnegie Mellon University

Pittsburgh, PA
garlan@cs.cmu.edu

Claire Le Goues
School of Computer Science,
Carnegie Mellon University

Pittsburgh, PA
clegoues@cs.cmu.edu

ABSTRACT
Many software systems operate in environments where change
and uncertainty are the rule, rather than exceptions. Techniques
for self-adaptation allow these systems to automatically respond
to environmental changes, yet they do not handle changes to the
adaptive system itself, such as the addition or removal of adaptation
tactics. Instead, changes in a self-adaptive system often require a
human planner to redo an expensive planning process to allow
the system to continue satisfying its quality requirements under
different conditions; automated techniques typically must replan
from scratch. We propose to address this problem by reusing prior
planning knowledge to adapt in the face of unexpected situations.
We present a planner based on genetic programming that reuses
existing plans. While reuse of material in genetic algorithms has
recently applied successfully in the area of automated program
repair, we find that naïvely reusing existing plans for self-* plan-
ning actually results in a loss of utility. Furthermore, we propose a
series of techniques to lower the costs of reuse, allowing genetic
techniques to leverage existing information to improve planning
utility when replanning for unexpected changes.

CCS CONCEPTS
• Computing methodologies → Control methods; • Computer
systems organization→ Cloud computing; Dependable and fault-
tolerant systems and networks; • Software and its engineering→
Software evolution; Search-based software engineering;

KEYWORDS
plan reuse, self-* systems, planning, uncertainty, genetic program-
ming, cloud services

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5715-9/18/05. . . $15.00
https://doi.org/10.1145/3194133.3194145

ACM Reference Format:
CodyKinneer, Zack Coker, JiachengWang, David Garlan, andClaire LeGoues.
2018. Managing Uncertainty in Self-Adaptive Systems with Plan Reuse and
Stochastic Search. In SEAMS ’18: SEAMS ’18: 13th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems , May 28–29,
2018, Gothenburg, Sweden. ACM, New York, NY, USA, Article 4, 11 pages.
https://doi.org/10.1145/3194133.3194145

1 INTRODUCTION
Self-* systems lower the costs of operating in complex environ-
ments of change and uncertainty by autonomously adapting to
change in pursuit of their quality objectives. One way these sys-
tems self-adjust is by making run-time adjustments according to an
adaptation strategy, or plan. Humans can proactively plan for vari-
ous situations by hand at design time [8]. This is a form of offline
planning, requiring a painstaking consideration of the full range of
possible runtime scenarios the system may encounter. Automated
techniques known as online planners seek to reduce planning costs
by synthesizing adaptation strategies at run-time [18, 32, 43, 48].

While these systems can quickly respond to the changing condi-
tions that they were designed for, they often struggle to handle un-
foreseen adaptation scenarios [10]. Such “unknown unknowns” re-
alistically include, but are not limited to (1) changes in the cost or ef-
fects of available adaptation tactics (e.g., a provider changes the pric-
ing schedule for cloud resources); (2) changes in available adapta-
tion tactics or options (e.g., a new type of hardware or server comes
to market), or (3) unexpected changes in environmental conditions
or use cases (e.g., unexpectedly surging popularity of a service,
such as via the Slashdot effect [42]). Even expensive human gen-
erated plans [8] cannot handle this challenge, requiring expensive
replanning post design time in the face of unanticipated changes.

One potential way to respond to unanticipated adaptation needs
is to automatically reuse or adapt prior knowledge to new situ-
ations. Indeed, research in artificial intelligence [1, 45] and case-
based reasoning [14, 28, 33] has explored the potential of plan reuse,
using knowledge contained in previously-created plans to speed the
synthesis of new plans in response to unanticipated change. How-
ever, the self-* context poses unresolved domain-specific challenges,
since these systems must autonomously respond to uncertainty
from a number of sources throughout the adaptation cycle.

https://doi.org/10.1145/3194133.3194145
https://doi.org/10.1145/3194133.3194145

SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden Cody Kinneer, Zack Coker, Jiacheng Wang, David Garlan, and Claire Le Goues

We have previously argued [9] that this is a fruitful potential
domain for the application of stochastic algorithms to self-* systems.
Stochastic search techniques have been shown to be well-suited for
similar problems [3, 6, 11, 17, 38, 39, 41]. However, these approaches
do not address the challenge of replanning for new, explicitly un-
foreseen contexts post-design time, which we propose to address
through reusing prior plans. Intuitively, genetic algorithms should
be expected to benefit from reused information, since they oper-
ate by balancing between exploring new solutions and exploiting
existing solutions from generation to generation, in effect reusing
information from previous generations. This observation has been
successfully applied in other domains, such as automated program
repair [16]. We investigate the extent to which reusing existing
plans in self-* planning can result in an improvement in the ful-
filling the system’s quality objectives. Surprisingly, we find that
reusing plans directly is less effective than replanning from scratch.
We further propose a series of techniques to make reusing existing
plans more efficient, ultimately obtaining a planner that can reuse
prior plans to improve the system’s quality objectives.

We present a self-adaptive systems planner, built on genetic pro-
gramming, that responds to unforeseen adaptation scenarios by
reusing and building upon prior knowledge. We represent individ-
uals as candidate plans, evaluating individual fitness by running
them against a simulated system. Our approach explicitly takes
into account the probability that individual tactics may fail, and
supports reasoning about tactic latency and planning time.

Our planner reuses past information by initializing the popula-
tion with individuals based on an existing plan. Our main contri-
bution is a series of techniques to support adapting to unexpected
changes at runtime by lowering the costs of plan reuse during evo-
lution, and an empirical study investigating the utility of plan reuse
for several indicative change scenarios. Our key contributions are:
• An investigation into plan reuse in genetic algorithm plan-

ning, finding, counter-intuitively, that naïve reuse can lower
planning utility.

• A set of techniques for lowering the cost of plan reuse, re-
sulting in a self-* planner that can reuse past information to
respond to unforeseen changes more effectively.

• As a sanity check, an empirical comparison of our genetic
programming planner to a PRISM MDP planner [34] that
shows the genetic programming planner can produce near-
optimal plans (0.05% error in the single objective scenario
and 9.4% in the multi-objective scenario).

• An investigation into the time, quality, and population di-
versity produced by planning with reuse when adapting to
unforeseen scenarios compared to planning from scratch.
We find that while the improvement is often slight, effective
plan reuse can result in a fitness improvement.

• Results that show that the objectives emphasized in a multi-
objective planner’s starting plan can influence the quality
and character of the planner’s output.

Our initial position [9] identified key research questions that we
address in this work, further expanding upon our prior concept in
several ways: a more expressive individual representation inspired
by true planning languages [8], a significantly more efficient fit-
ness evaluation strategy, a series of techniques for supporting plan
reuse by reducing the search cost, a comparative evaluation to an

Figure 1: MAPE-K Loop for self-* systems.

exhaustive planner [34], an experimental study investigating the
trade-offs of plan reuse when adapting to unforeseen scenarios, and
support for multi-objective search [47].

The rest of the paper is as follows. Section 2 outlines necessary
background. We next describe the running example we use to both
illustrate and evaluate our technique (Section 3). Section 4 details
our genetic programming self-* planning approach. Section 5 de-
scribes our evaluation; Section 6 outlines related work. Section 7
concludes and offers discussion.

2 BACKGROUND
This section overviews self-* planning (Section 2.1) and genetic
programming (Section 2.2), focusing on the background required
to understand our approach.

2.1 Self-* Planners
Self-* systems typically consist of two subsystems, a managed
system and a managing system. Many self-* systems follow the
well-known five-component MAPE-K architecture [20], shown in
Figure 1. We focus on the planning (P) component, which pro-
duces strategies consisting of tactics, ordered to achieve a particular
goal. For our purposes, tactics are architectural changes the sys-
tem can perform to respond to changes, e.g., “turn off a server at
location A.” While multiple planning languages exist for the self-*
context [26, 43], our approach is closest to Stitch [8]. An online
planner [43] generates a plan at run-time, which can adapt quickly
at a potential cost to optimality. An offline planner [8] precomputes
strategies to handle common cases and then chooses between them
at run-time. This allows for a fast, correct response to known or pre-
dicted situations, but cannot handle unanticipated adaptation needs.
We compare to a previous hybrid online/offline approach [34], that
relies in part on Markov decision processes (MDPs), formal models
that can explicitly capture probabilistic behavior. Model checkers
such as PRISM [26] can use exhaustive search to compute an opti-
mal sequence of tactics to maximize one or more system objective
(e.g., profit) for systems formalized as MDPs.

Managing Uncertainty in Self-* Systems with Plan Reuse and Stochastic Search SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden

2.2 Genetic Programming
Genetic programming [24] (GP) is a stochastic technique mod-
eled on the principles of biological evolution. GP is well-suited
for problems with poorly understood search landscapes, and those
for which approximate solutions are suitable [37]. Note that these
conditions apply to our problem: interacting tactics or quality at-
tributes render the search landscape complex; large search spaces
may preclude the need for (or feasibility of) computing optimal
plans; and sub-optimal plans are often acceptable in real systems.
Indeed, genetic algorithms have been successfully applied to self-*
systems [6, 11, 38], although using them to explicitly leverage prior
knowledge during replanning has not been investigated in self-*
systems to the best of our knowledge.

At a high level, a GP evolves a population of candidate programs
towards a goal over successive generations. A GP represents and
manipulates individual candidate solutions as trees, which are mod-
ified and recombined using computational analogues of biological
mutation, crossover, and selection. Mutation randomly modifies one
or more subtrees in an individual, supporting search space explo-
ration. Crossover randomly combines parent individuals to produce
new children, supporting exploitation of partial solutions. A tree-
based representation admits the enforcement of a type system over
nodes [31], limiting exploration of some types of invalid solutions.

A problem-specific objective or fitness function measures how
well a candidate solution satisfies the search objectives. Fitness typ-
ically informs the probability with which an individual is selected
from one generation to the next for continued iteration, and can
inform the search stopping criterion (if an optimal value or suitable
threshold is known). In contexts with multiple fitness objectives, a
multi-objective search can produce a set of individuals, or Pareto
frontier, representing the best possible trade-offs between several ob-
jectives. We use SPEA2 [47] to implement a multi-objective search,
which selects a fixed quantity of non-dominated individuals to
create the next generation.

3 RUNNING SCENARIO
We first present a system, adapted from prior work [34], that we
use as a running example and in evaluation.

3.1 Scenario
Figure 2 shows a cloud-based self-adaptive website with an N-tiered
architecture. User requests to the system are distributed by a load
balancer to data centers, and then to individual servers. Servers
process requests, and then return a response to the user. Each data
center has servers of different types, with different attributes. In
general, the more users a server can handle, the higher its cost. The
website can also serve ads to increase profit, slowing response time.

3.2 Quality objectives
The system goal is to earn profit while maintaining user satisfaction.
We consider three interrelated quality objectives: (1) System profit
as generated by current users, minus operating cost (corresponding
to the number and cost of the servers), (2) User latency, or the mean
time users have to wait for a system response (related to the number
and quality of the running servers), and (3) User-perceived quality,
the percentage of users viewing ads. These goals are in tension.

Figure 2: Cloud web server architecture.

For example, while the system uses ads for revenue, they increase
latency. The system can remove ads to improve user experience
and server load, while decreasing profit.

3.3 Adaptation tactics
Multiple tactics can adjust the system in pursuit of its quality objec-
tives. These tactics can turn on and off different types of servers, up
to a maximum of five per type. Each server type has an associated
operating cost per second and a number of users it can support
per second, with or without ads. The system’s load balancer dis-
tributes requests among data centers according to a traffic value;
there are five traffic levels per data center, and traffic is distributed
proportionally. The system can modify dimmer settings on each
server type, which controls the percentage of users who receive
ads (using a brownout mechanism [23] on a per-data center basis).
The dimmer level can be changed at 25% increments. At run-time,
each of these adaptation tactics may fail. Starting and shutting
down servers fails 10% of the time, modifying the dimmer level and
increasing the traffic level fails 5% of the time, and decreasing the
traffic level fails 1% of the time.

3.4 Post-design-time adaptation
Although synthetic, this scenario illustrates a number of ways that a
self-* adaptation problem can change post-design. Quality priorities
may change, e.g., the system owner might sell it to a charitable
organization that cares more about user satisfaction than profit.
The effects of existing tactics may change, e.g., the cost of adding
a new server may increase or decrease based on a cloud service
provider’s fee schedule. New tactics may become available, via
new data centers, server types, or even hardware. The use case
or environment may also unexpectedly change. To the best of our
knowledge, existing self-* planning technology must always replan
from scratch in the face of such adaptation changes.

SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden Cody Kinneer, Zack Coker, Jiacheng Wang, David Garlan, and Claire Le Goues

⟨plan⟩ ::= ‘(’ ⟨operator⟩ ‘)’ | ‘(’ ⟨tactic⟩ ‘)’

⟨operator⟩ ::= ‘F’ ⟨int⟩ ⟨plan⟩ (For loop)
| ‘T’ ⟨plan⟩ ⟨plan⟩ ⟨plan⟩ (Try-catch)
| ‘;’ ⟨plan⟩ ⟨plan⟩ (Sequence)

⟨tactic⟩ ::= ‘StartServer’ ⟨srv⟩ | ‘ShutdownServer’ ⟨srv⟩
| ‘IncreaseTraffic’ ⟨srv⟩ | ‘DecreaseTraffic’ ⟨srv⟩
| ‘IncreaseDimmer’ ⟨srv⟩ | ‘DecreaseDimmer’ ⟨srv⟩

Figure 3: Grammar for specifying plans. Servers (srv) can be
of types A, B, C, or D; For loops can iterate up to 10 times.

4 APPROACH
We present a planner that reuses previously-known information
(Section 4.4) using GP to efficiently produce nearly optimal results
in a large, uncertain search space in response to unforeseen adap-
tation scenarios. Our approach reuses past knowledge by seeding
the starting population with prior plans. These plans satisfied the
system’s objectives in the past, but are currently sub-optimal due
to “unknown unknowns”, unexpected changes to the system or its
environment that the past plans did not address. After an unex-
pected change occurs, the system model must be updated to reflect
the new behavior after the unexpected change. The mechanism for
synchronizing the system model with the actual world is outside
the scope of this paper; this may be done manually (likely with less
effort than replanning), or automatically [21, 46]. Section 4.4 ex-
plains how our approach reuses prior plans, while Sections 4.1–4.3
provide the necessary technical details on the GP implementation.

A new GP application is defined by how individuals are repre-
sented (Section 4.1); how they are manipulated through mutation
and crossover (Section 4.2); and how the fitness of candidate solu-
tions is calculated (Section 4.3).

4.1 Representation
Individuals in the population are plans organized as trees. Figure 3
gives a Backus-Naur grammar for our plans. Each consists of either
one of six available tactics (described in Section 3), or one of three
operators containing subplans. The for operator repeats the given
subplan for 2–10 iterations; the sequence operator consecutively
performs 2 subplans. The try-catch operator tries the first sub-
plan. If the last tactic in that subplan fails, it executes the second
subplan; otherwise, it executes the third subplan. The example plan
at the top of Figure 4 uses a try-catch operator, first attempting to
start a new server at data center A. If successful, it attempts to start
a server at data center B; if not, it retries the StartServer A tactic.

This planning language is a simplified variant of other languages
such as Stitch [8]. Unlike Stitch, our language does not consider plan
applicability (guards that test state to determine when a plan can be
used), which we leave to future work. Note that any plan express-
ible in our language could be expressed with only the try-catch
operator, and that our language can represent any PRISMMDP [26]
plan as a tree of try-catch operators with depth 2h , where h is
the planning horizon.

(T (StartServer A) (StartServer A) (StartServer B))

StartServer A

StartServer A

0.10

StartServer B

0.90

987.8

0.10

1137.3

0.90

1137.3

0.10

1526.6

0.90

Figure 4: Top: An example plan. Bottom: This plan’s system
state tree.

4.2 Mutation and Crossover
Mutation may either replace a randomly selected subtree with
another randomly-generated subtree, or copy an individual unmod-
ified to the next generation. The distribution between these choices
is a tunable parameter. Mutation imposes both size and type limita-
tions on generated subtrees, which can range from a single tactic
to a tree of depth ten. The crossover operator [44] selects a subtree
in each of two parent plans (selected via tournament selection) and
swaps them to create two new plans. We enforce syntax rules on
both operators (e.g., requiring swapped or generated nodes to have
the correct number of children of the correct type). However, it
is still possible for the planner to generate plans which lead the
system to an invalid state, e.g., a plan that tries to add more servers
than are available is syntactically correct, but invalid. We do not
prevent this behavior, instead penalizing such plans.

4.3 Fitness
We evaluate candidate fitness by simulating the plan to measure the
expected quality of the resulting system. Because tactics might fail,
we must combine multiple eventualities. Thus, conceptually, fitness
is computed via a depth-first search of all possible states that a
systemmight reach given a plan, captured in a system state tree. Tree
nodes represent possible system states; connecting edges represent
tactic application attempts, labeled by their probability (the tactic
success/failure probability). Every path from the root (the initial
system state) to a leaf represents a possible plan outcome. Overall
plan fitness is the weighted average of all possible paths through
the state tree. Path fitness is the quality of the leaf node system
state, measured as one or more of profit, latency, and user perceived
quality (Section 3). Each final system state contributes to overall
plan fitness, weighted by the product of its edge probabilities.

To illustrate, Figure 4 shows a plan and its corresponding state
tree. Leaf nodes are labeled with their state fitness (profit, in this
example); edges with their probability. Left transitions correspond
to tactic failure; right-transitions, tactic success. Following the right-
hand transitions shows that, if all tactics succeed, profit will be

Managing Uncertainty in Self-* Systems with Plan Reuse and Stochastic Search SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden

1526.6, with an 81% probability. Following the left hand transitions
shows the expected system state if all tactics fail (1% probability).
The weighted sum over all paths (overall fitness) is 1451.14.

The simulator takes into account planning time and tactic latency.
Each leaf in the state tree represents a timeline of events (parent tac-
tics succeeding or failing). This timeline is simulated to obtain the
fitness accrued while the plan was executing as well as the fitness
state of the system after the plan terminates. To support reasoning
about the opportunity cost of planning time, the fitness function
takes as input a window size parameter that specifies how long the
system is expected to continue accruing the fitness resulting from
the provided plan. If the system will remain in a state for a long
period of time, it may be worthwhile to spend more time planning
since the system has more time to realize gains from the planning
effort. On the other hand, if the system is expected to need to re-
plan quickly, spending time optimising for the current state may be
wasted, since this effort will need to be repeated before gains are re-
alized. Total fitness accrued is equal to s∗p+d+a∗(w−(t+p)), where
s is the system’s initial fitness, p is the planning time, d is the fitness
accrued during plan execution, a is the fitness value after the plan
is executed,w is the window size, t is the time plan’s execution time.

We investigated several additional heuristic modifications to fit-
ness computation to manage invalid actions and plan size. First, we
investigate an invalid action penalty per invalid tactic. To manage
produced plan size, we include a verboseness penalty, which penal-
izes a plan proportional to its size; and a parsimony pressure kill
ratio, which assigns a fitness of zero to a random proportion of in-
dividuals larger than the average population size. In reporting final
plan fitnesses, we report actual fitness, unmodified by penalties.

4.4 Plan Reuse
Our approach reuses past knowledge by seeding the starting popu-
lation with prior plans. After the system model is updated to reflect
the unexpected change, a starting population of adaptation strate-
gies is created. These strategies are iteratively improved by random
changes via mutation and crossover, with the most effective plans
being more likely to pass into the next generation, resulting in
utility increasing over time. Seeding previously useful plans into
the population allows for useful pieces of planning knowledge to
spread to other plans during crossover.

Preliminary results showed that initializing the search by naively
copying existing plans did not result in efficient planning, and in
most cases was inferior compared to replanning from scratch with
a randomly generated starting population. This is due to the high
cost of calculating the fitness values of long starting plans. To
realize the benefits of reuse, we introduce several strategies for
lowering this cost, including seeding the initial population with a
fraction of randomly generated plans in addition to previous plans,
prematurely terminating the evaluations of long running plans, and
reducing the size of starting plans by randomly splitting these plans
into smaller plan trimmings.

To reduce the number of long starting plans that the planner
needs to evaluate, we initialize a scratch_ratio percent of the starting
population with short (a maximum depth of ten) randomly gener-
ated plans, and only seed the remaining 1−scratch_ratio individuals
with reused plans. This reduces the amount of time spent evaluating

the fitness of the starting plan in the new situation while still allow-
ing for the reusable parts of the existing plan to bootstrap the search.

Since the evaluation time is exponential with respect to the plan
size, the few longest plans in the population can take significantly
longer to evaluate than the rest of the population. To prevent wast-
ing search resources on excessively long plans, we introduce a
kill_ratio parameter that terminates the evaluation of overly long
plans and assigns them a fitness of zero. When kill_ratio percent
of individuals have been evaluated, evaluation stops and all out-
standing plans receive a fitness of zero. This approach leverages
the parallelizability of GP to avoid hard-coding hardware and plan-
ning problem dependent maximum evaluation times, but requires
planning on hardware with multiple cores.

Lastly, to further reduce the cost of reuse, rather than completely
copying large starting plans, we initialize the search with small plan
“trimmings” from the initial plan. Our planner generates trimmings
by randomly choosing a node in the starting plan using Koza’s node
selector [25] that can serve as the root of a new tree. This subtree
is then added to the starting population. The process is repeated
until the desired number of reused individuals is obtained.

5 EVALUATION
We built the genetic programming planner described in Section 4
on ECJ.1 This section describes our evaluation. We investigated the
following research questions:

(1) As a sanity check, how does the GP planner’s efficiency and
effectiveness compare to an exhaustive planner?

(2) Can plan reuse improve planning utility in response to un-
foreseen adaptation scenarios?

(3) Does our planner’s techniques for facilitating reuse improve
planning effectiveness?

(4) How does plan reuse impact population diversity?
In all experiments, we evaluate on various scenarios based on the

system shown in Figure 2 and described in Section 3. The system
begins each scenario with one server of each type, a default traffic
setting of 4, and all dimmers set to 0. The experimental server ran
64-bit Ubuntu 14.04.5 LTS with a 16 core 2.30 GHz CPU and 32
GB of RAM, but was set to limit the planners to 10 GB of RAM.
The GP used 8 of the available CPU cores. PRISM experiments use
version 4.3.1 and the sparse engine, unless otherwise stated. We
set the planning horizon to 20 for PRISM, and the maximum plan
tree depth to 20 for the GP planner. Each experimental result is
the median of 10 trial runs if randomness or timing is involved.
Where statistical tests are used to asses significance, we use the
Wilcoxon rank-sum test, a non-parametric test that does not require
the samples to follow a normal distribution, and is appropriate for
small sample sizes. When P < 0.05, we reject the null hypothesis
that the samples arise from the same population. In the multi-
objective context, we compute a SPEA2-defined Pareto optimal
front optimizing for two or more of the given fitness objectives.
We set the SPEA2 algorithm elite set to 50. In experiments that
we compare to PRISM, we disable reasoning about tactic latency
since this is not easily achieved in PRISM. Where tactic latency

1ECJ is available at https://cs.gmu.edu/~eclab/projects/ecj/. The source
code for our planner is available at: https://github.com/ZackC/
AdaptiveSystemsGeneticProgrammingPlanner

https://cs.gmu.edu/~eclab/projects/ecj/
https://github .com/ZackC/AdaptiveSystemsGeneticProgrammingPlanner
https://github .com/ZackC/AdaptiveSystemsGeneticProgrammingPlanner

SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden Cody Kinneer, Zack Coker, Jiacheng Wang, David Garlan, and Claire Le Goues

2750

2800

2850

2900

2950

3000

0 50 100 150 200
Runtime (seconds)

P
ro

fit Planner
PRISM
GP

0

1000

2000

3000

4000

0 2500 5000 7500
Latency

P
ro

fit

Planner

PRISM

GA planner

Figure 5: Top: Profit versus planning time for GP parameter
configurations. Many configurations produce similar profit
results to PRISM, significantly faster. Bottom: Pareto fronts
for profit and latency from both planners.

is considered, we set the window size to be 10,000 seconds unless
otherwise specified. Where we compare to searches from “scratch”,
we use ramped half-and-half[24] to initialize the population.

5.1 Comparative Study
5.1.1 Efficiency. As a sanity check to establish that our stochas-

tic planner achieves reasonable results, we first tuned and compared
it to an exhaustive planner from previous work [34], an MDP plan-
ner written in PRISM.2 We configured the planner with the same
settings as in the previous work, adding path probability to the sys-
tem specification and planning for a particular environment state.

As in many optimization techniques, a GP typically includes
many tunable parameters that require adjustment. We thus per-
formed a parameter sweep to heuristically tune the reproductive

2Because the Pandey et al. approach [34] was not named, and we assess the limitations
of PRISM rather than the hybrid element, we refer to this as the PRISM planner for
the remainder of the paper.

strategy (which determines how individuals in the next genera-
tion are produced, a ratio of crossover, mutation, and reproduc-
tion/copying) and number of generations, population size, and all
penalty thresholds (Section 4.3). We generated plans for the sys-
tem’s initial configuration (Section 3), and started each search from
a minimal plan of four tactics that does not affect fitness.

The dark point at the top of Figure 5 shows the optimal system
profit (fitness) and planning time (200 seconds) of the PRISM plan-
ner. Each gray point corresponds to a different parameter configu-
ration of the GP planner. Many parameter configurations allowed
the GP planner to find plans that were within 0.05% of optimal, but
in a fraction of the time (under 1 second in some cases). The best
configuration that produced plans in 0.50 seconds resulted in only
0.29% error, which demonstrates the that the planner has the po-
tential to be used as an online planner that reacts to change in real
time. This top configuration used 30 generations each containing
1,000 individuals; the next generation is produced 60% by crossover,
20% by mutation, and 20% reproduction; applied 0 parsimony pres-
sure and 0.01 verboseness penalty (i.e., a small penalty for large
plans); and an invalid action penalty of 0. We use these values in
subsequent experiments unless otherwise indicated.

5.1.2 Search space. Next, we evaluate and compare the plan-
ners’ search space limitations. We varied search space size by ad-
justing the number of available server types (t) in our scenario,
which caused the model states to grow exponentially following
the equation (6 servers_per_type ∗ 5 possible_dimmer_values ∗
5 possible_tra f f ic_values)t .

We found that PRISM can plan to maximize profit for 3 server
types, with a maximum plan size of 20 tactics. However, PRISM runs
out of memory and produces no plans when given four server types
to consider, even when searching for only a single tactic. Using the
explicit engine, which requires less memory but more run-time,
PRISM could produce a plan for four server types for a plan length
of up to seven. By contrast, our GP planner succeeded on the four
server type case, increasing profit from 988 in the initial state to
2993. Finally, we increased the number of data centers from 4 to 16,
a state space on the order of 1037, and successfully generated a plan
after about 9 minutes. These tests demonstrate that the GP planner
can handle a very large search space, outperforming an exhaustive
planner, and provides evidence that the planner works correctly to
build confidence in our core experiments investigating plan reuse.

5.1.3 Multi-objective search. The GP planner can create a Pareto
frontier of plans to trade-off between multiple quality attributes,
allowing system maintainers to evaluate the best possible combina-
tions. PRISM can also generate a Pareto frontier for two objectives.
The bottom of Figure 5 shows the Pareto fronts for the profit and
latency objectives produced by PRISM and the GP. For this exper-
iment, we set the planning horizon for both planners to 10. PRISM
found 30 points along the curve; the GP planner produced 89, after
removing duplicates. PRISM took 1177 seconds; the GP planner took
751 seconds. The front produced by the genetic planner roughly ap-
proximates the front produced by PRISM, with 9.4% average error.

We also generated three-dimensional Pareto fronts for all three
quality objectives with the GP planner. PRISM cannot produce
fronts in this case, and the graphs are difficult to display, but we
observe that the starting plan influenced the shape of the resulting

Managing Uncertainty in Self-* Systems with Plan Reuse and Stochastic Search SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden

Table 1: Improvement obtained by reuse enabling tech-
niques.

Planning Technique Utility P Value
Scratch 1.000
Scratch & kill_ratio 1.044 < 0.01
Reuse 0.962 0.06
Reuse & kill_ratio 1.072 < 0.01
Reuse & kill_ratio & scratch_ratio 1.077 0.63
Reuse & kill_ratio & scratch_ratio & trimmer 1.112 < 0.01

front. If we begin with plans previously optimized for profit, we
find Pareto fronts with more high-profit individuals. Starting from
a lower-quality plan, or planning from scratch, produced a broader
front of lower latency individuals. In effect, these starting plans led
the search to explore more of the trade-offs between latency and
quality. We explore the trade-offs of plan reuse more directly in the
next set of experiments.

5.2 Reuse-Enabling Techniques
While the previous results inspire confidence that the planner can
be competitive with an optimal planner, our primary goal is to use
the GP planner to realize increased planning ability in response to
unexpected changes through reusing prior plans. Since preliminary
results showed naïvely reusing entire plans in the starting popu-
lation resulted in poor planning performance, recall we introduce
several techniques for lowering the cost of reuse (Section 4.4), the
kill_ratio, scratch_ratio, and plan trimmer.

To demonstrate the usefulness of these features, we performed
planning for the Request Spike + New Data Center scenario
with a planning window of 10000, incrementally enabling the pro-
posed reuse enabling techniques to show the improvement obtained
from each feature. For comparison we also plan from scratch both
with and without using kill_ratio. When used, the values used were
kill_ratio = 0.75 and scratch_ratio = 0.5. These values were chosen
based on a parameter sweep.

Table 1 shows the results, normalized to the utility of planning
from scratch without the kill_ratio, such that this utility is 1. Using
the kill_ratio improved utility to 1.044. Without any reuse-enabling
techniques, reusing plans by initializing the population with mu-
tated versions of the starting plan resulted in a fitness of 0.962,
underperforming compared to planning from scratch. Enabling the
kill_ratio feature improved the utility obtained by reusing plans
to a level slightly better than planning from scratch while using
the kill_ratio. Adding the scratch_ratio resulted in a slight improve-
ment of 0.005, and trimming the reused plans resulted in a further
improvement of 0.035. The scratch_ratio did not show a statistically
significant improvement for this scenario, but did for the Increased
Costs scenario at the 0.05 level. Trimming plans and the kill_ratio
both showed statistically significant improvements.

These results demonstrate that while the costs of evaluating the
fitness of prior plans makes improving planning fitness through
reuse nontrivial, the proposed enhancements to GP planning can re-
duce this cost and achieve higher fitness than planning from scratch.

Table 2: Percent change reusing plans instead of planning
from scratch. Statistically significant results (P < 0.05) are
shown in bold font.

Scenario 1K 10k
Increased Costs 0.02 0.81
Network Unreliability 0.01 0.10
Failing Data Center -0.02 0.14
Request Spike -0.14 -0.01
New Data Center -0.63 0.28
Request Spike + New Data Center -0.47 1.54

5.3 Unforeseen Adaptation Scenarios
Our core experiments investigate the GP planner’s ability to ad-
dress unforeseen adaptation needs with plan reuse. We do this
by constructing adaptation scenarios that cover different types of
adaptation needs based on different sources of uncertainty, and as-
sessing the planner’s ability to respond when planning with reuse
compared to planning from scratch. The considered scenarios are:
• Increased Costs. All server operating costs increase uni-

formly by a factor of 100, a system-wide change.
• Failing Data Center. The probability of StartServer C

failing increases to 100%, a change in the effect of an existing
tactic.

• Request Spike + New Data Center. The system experi-
ences a major spike in traffic, and gains access to a new
server location to help address it. This location (D), contains
servers that are strictly less efficient than those at location
A (i.e., they have the same operating cost, but lower capac-
ity), but would be useful if there were more requests than
could be served by location A. This corresponds primarily to
an environmental change, along with the addition of a new
tactic.

• Network Unreliability The failure probability for all tac-
tics increases to 67%, a change in the effect of an existing
tactic.

For each adaptation scenario, we modified the simulator to be-
have according to the change relative to the initial scenario (Sec-
tion 3). We maximize profit in all experiments; box and whisker
plots show the best individual in the population each generation
over ten planner executions. We show convergence in terms of the
quality (profit) of the produced plans over GP iterations, a machine-
and problem-independent proxy for evaluation time.

Table 2 shows the percent change between planning from scratch
and plan reuse for each scenario and for two window sizes. Posi-
tive values indicate the reuse resulted in an improvement, negative
values indicate a decrease in utility compared to planning from
scratch. Most values showed a small difference that was not sta-
tistically significant. For the smaller window size, no values were
statistically significant, indicating that there is no statistical differ-
ence between plan reuse and planning from scratch. For the larger
window size, half of the scenarios showed statistically significant
improvements from planning from scratch, with the complex Re-
quest Spike + New Data Center scenario showing the largest
improvement. Since a larger window size means that the system has
more time to realize the benefits of a higher quality plan, this result

SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden Cody Kinneer, Zack Coker, Jiacheng Wang, David Garlan, and Claire Le Goues

Network Unreliability Request Spike & New Data Center

17500000

20000000

22500000

25000000

27500000

30000000

2.5e+07

3.0e+07

3.5e+07

4.0e+07

4.5e+07

5.0e+07

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Generation

P
ro

fit

Starting
Plan

reuse

scratch

Figure 6: Profit versus generation for two scenarios.

Failing Data Center Increased Costs Network Unreliability

New Data Center Request Spike Request Spike & New Data Center

2.93e+07

2.94e+07

2.95e+07

2.10e+07

2.15e+07

2.20e+07

2.90e+07

2.91e+07

2.92e+07

2.93e+07

2.94e+07

2.95e+07

2.6e+07

2.7e+07

2.8e+07

2.9e+07

4.5e+07

4.6e+07

4.7e+07

4.8e+07

4.6e+07

4.7e+07

4.8e+07

4.9e+07

5.0e+07

0 25 50 75 100 0 20 40 60 0 25 50 75 100

0 50 100 150 200 0 50 100 150 0 50 100 150 200

Cumulative Evaluation Time (seconds)

P
ro

fit

Starting
Plan

reuse
scratch

Figure 7: Profit versus cumulative runtime for all six scenarios.

is intuitive. Additionally, since a more complex change scenario
is more difficult to plan for, it follows that plan reuse results in a
greater improvement for these scenarios. While in most cases the
differences are small, these results show that our approach using
plan reuse can result in fitness improvements.

5.3.1 Modified System or Tactics. Figure 6 shows the profit over
generation produced by the GP for two of the considered scenarios.
The left of Figure 6 shows results for the Network Unreliability

scenario. For much of the first seven generations of planning, plan
reuse outperforms planning from scratch, with the two eventually
converging to the same fitness at generation eight. The Increased
Costs and Failing Data Center scenarios showed similar results.

5.3.2 Changing Environment. The right of Figure 6 shows results
for the Request Spike + New Data Center scenario, in which
the system replans for a large increase in the number of system
requests handled by previous plans (e.g., the Slashdot effect [42]).

We also provide the system with a new data center, D, to possibly
use to address this issue.3 This scenario shows the most pronounced
differences between plan reuse and planning from scratch, with
plan reuse performing better for all 20 generations. The Request
Spike and New Data Center scenarios alone showed a similar
pattern but was less pronounced.

5.3.3 Wall-clock time. Because fitness evaluation time varies
by plan size, the amount of time needed to evaluate the fitness of
each generation is variable, making the number of generations an
imperfect proxy for run time. Thus, Figure 7 shows results in terms
of wall-clock time for each scenario. The Network Unreliability,
Increased Costs and Failing Data Center scenarios showed sim-
ilar behavior, with only a very small benefit from reusing plans.
TheNew Data Center andRequest Spike + New Data Center

3We also evaluated planning in response to the two changes independently. Both
scenarios showed similar results to the Request Spike + New Data Center,
although the benefits of plan reuse are more prominent in the hybrid scenario.

Managing Uncertainty in Self-* Systems with Plan Reuse and Stochastic Search SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden

scenarios showed greater differences, in particular the Request
Spike + New Data Center scenario showed a clear advantage to
reusing existing plans.

5.4 Diversity
Genetic programming balances search space exploration, to avoid lo-
cal optima, and exploitation of promising partial solutions. Solution
diversity is necessary to support exploration of good partial solu-
tions; however, it typically decreases as the search converges [29],
assuming that the population is sufficiently diverse. To gain addi-
tional insight into plan evolvability given different scenarios, we
measured the syntactic population diversity over a search by com-
puting the average pairwise tree edit distance of the individuals,
using the APTED algorithm [36].

Figure 8 shows population diversity across the scenarios. Diver-
sity values from planning from scratch, as well as reusing plans both
with and without trimming are shown. Planning from scratch pro-
duces a highly diverse starting population that gradually becomes
less diverse as it converges.

As shown in Figure 8, reusing existing plans without first trim-
ming them results in a less diverse population initially. Rather than
a gradual decrease in diversity as would be expected, in some sit-
uations (such as generations 2–8 for the New Data Center) the
diversity actually increases as the population explores new plans
before continuing to converge on a good solution. However, when
using the trimmer, the diversity values start high and smoothly
decrease. This observation helps to explain why trimming existing
plans resulted in a more significant improvement than the scratch
ratio alone, since the presence of smaller plan trimmings facilitates
a smoother exploration and exploitation trade-off.

6 RELATEDWORK
Planning: The artificial intelligence (AI) community has produced
a considerable body of research in planning, including but not
limited to probabilistic approaches like MDP [19, 30]. Some of this
work demonstrates the benefits of plan reuse, such as by reusing
parts of existing plans that target particular goals in new situations
that share those goals [45]; concurrently executing and dynamically
switching between plans designed to handle contingencies [4];
modifying plans produced under assumed optimal conditions to
handle common problems found in simulation [27]; or iteratively
transforming simple plans to produce complex plans [1]. Case-based
plan adaption [33] explicitly reuses past plans in new contexts, in
which context GAs have been explored directly [14, 28], e.g., by
injecting solutions to previous problems into a GA population to
speed the solution of new problems. Although the mechanism is
similar, our approach is importantly novel in that it addresses a
broader class of uncertainty.

Reinforcement learning has been applied to self-* systems to
learn at runtime using Q-learning [18, 22]. Like our approach, this
technique could be used to aide in adapting to unexpected changes,
and like GP, this technique balances exploration of possible al-
ternatives and exploiting solutions that achieve the best results.
Our approach is different from reinforcement learning because our
approach utilizes a model of the system and environment. While re-
inforcement learning has the advantage of learning online without

needing to synchronize a model with the environment, the system
will likely perform suboptimally while it performs random actions
to learn. This might often be undesirable in many production sys-
tems, especially if such actions could result in irreparable damage
to the system or others.

A number of works address the problem of updating system
models when they become out of sync with reality, such as focus-
ing on architectural evolution [2], identifying when unexpected
changes occur for to assist humans in evolving the system [40], or
evolving models at runtime [46].

Self-* planning:Mutliple PRISM MDP planners appear in the self-
* literature [5, 32, 34]. These techniques are typically offline, as
is manual human planning [8], and produce good plans but have
issues with problem size limitations. Much of the other work in
this space focuses on online planning, e.g., reactively regenerating
failing parts of a plan [43] or using hill-climbing [48] (another
stochastic technique) to generate plans quickly in exchange for a
moderate loss of optimality. Our work focuses in particular on plan
reuse to handle uncertainty, and is not reactive.

Plato and Hermes [38] use genetic algorithms to reconfigure soft-
ware systems (in the domain of remote data mirroring) to respond
to unexpected failures or optimize for particular quality objectives.
The search problems (representation, operators, and fitness func-
tion) differ from ours, commensurate with the different domain.
However, the key distinction is our focus on information reuse
to handle uncertainty. That is, although both Hermes and our ap-
proach are initialized with existing adaptation strategies, we focus
explicitly on the utility of alternative starting strategies in the face
of unanticipated scenarios. We also compare a GP planner to an
optimal planner. GAs have also been used to optimize across mul-
tiple quality objectives in quality of service composition [6], and
to optimize architectures and associated service providers in self-
architecting systems [11]. This prior work broadly substantiates
the utility of stochastic algorithms in an self-* planning context,
but otherwise focuses on very different domains than we do.

In our own previous work [9], we demonstrated the feasibility
of plan reuse using genetic programming in self-* contexts. We
expand upon that initial concept in the ways described in Section 1.

Search-based software engineering: The field of Search-Based
Software Engineering (SBSE) uses meta-heuristic and stochastic
search to solve multiple software engineering problems [15]. There
has been considerable recent success in reusing and improving exist-
ing programs [3], similar to the way we reuse and improve existing
plans. Such methods have been applied to self-adaptive systems and
architectural design and evolution [7, 35], set configuration param-
eters for systems with strict quality requirements [13], and improv-
ing self-adaptive system test cases [12]. However, such work does
not directly tackle the problem of self-adaptive planning, or improve
on previous plans, and the research space of SBSE as applied to
such systems remains underinvestigated, despite its potential [16].

7 CONCLUSION
Future generation systems will operate in complex environments of
change and uncertainty. Self-* systems lower the costs of operating
in such conditions by autonomously adapting to change in pursuit
of their quality objectives, and planning is an important component

SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden Cody Kinneer, Zack Coker, Jiacheng Wang, David Garlan, and Claire Le Goues

Failing Data Center Increased Costs Network Unreliability

New Data Center Request Spike Request Spike & New Data Center

0.2

0.4

0.6

0.2

0.4

0.6

0 10 20 0 10 20 0 10 20
Generation

N
or

m
al

iz
ed

 D
iv

er
si

ty
(a

ve
ra

ge
 p

ai
rw

is
e

tr
ee

 e
di

t d
is

ta
nc

e)

Starting
Plan

mutator

scratch

trimmer

Figure 8: Diversity versus generation for all six scenarios.

of these approaches. We propose to use stochastic search to deal
with unexpected adaptation strategies, specifically by reusing or
building upon prior knowledge. Our GP planner can handle a very
large search space (over 1037 possible states), can produce plans to
within 0.05% of optimal, and can effectively plan with respect to
multiple system quality objectives.

Our core results demonstrate the feasibility of reusing past
knowledge in unexpected adaptation scenarios, and that the na-
ture of both the scenario and of that prior knowledge influences
its effectiveness. While naïvely reusing existing plans can actually
result in worse performance than planning from scratch, effectively
utilizing prior plans can reduce the number of generations required
to reach a good plan for various scenarios, but whether this trans-
lates into run-time savings depends on both the size of the starting
plan and its relationship to the new scenario. Our diversity analysis
corroborates these results.

There exist several limitations and threats to the validity of
our results. First, our parameter tuning is heuristic, performing a
coarse test of one set of parameters before a finer-grained sweep;
it is possible that the best configuration is located in an area that
seemed less promising initially. Additionally, while we took care in
our implementation of the PRISM MDP planner, mistakes in our
implementation could affect our results. We mitigate the risks of
bias in our Java GP planner representation by releasing it publicly
for review and replication.

Additionally, our results may not generalize to other systems,
or to other unexpected adaptation scenarios. We mitigate this risk

by building our evaluation on a cloud system used to assess prior
work [34], and designed to approximate real-world systems, such
as an application running on Amazon’s Cloud Web Services. We
constructed our evaluation scenarios to sample as much of the space
of possible unanticipated adaptation needs as possible, and leave
the investigation (or even a taxonomization) of additional such
scenarios to future work. Other future research directions include
autonomously determining when to replan, and investigating how
the system model can be kept up to date with reality.

As systems become larger and more complex, the difficulty of
planning for the unexpectedwill only increase.We show that knowl-
edge reuse is a promising tool for addressing unexpected changes,
while being underexplored in the self-* context. Future work in
plan reuse in self-* systems has the potential to enable the next
generation of autonomous systems to quickly respond to changes
unforeseen at design time.

ACKNOWLEDGEMENTS
This research supported in part by the National Science Foundation
(CCF-1618220) and the National Science Foundation Graduate Re-
search Fellowship Program (DGE1745016). Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
sponsoring agencies.

Managing Uncertainty in Self-* Systems with Plan Reuse and Stochastic Search SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden

REFERENCES
[1] José Luis Ambite and Craig A. Knoblock. 2001. Planning by Rewriting. J. Artif.

Int. Res. 15, 1 (2001), 207–261.
[2] Jeffrey M. Barnes, David Garlan, and Bradley Schmerl. 2014. Evolution Styles:

Foundations and Models for Software Architecture Evolution. Softw. Syst. Model.
13, 2 (May 2014), 649–678. https://doi.org/10.1007/s10270-012-0301-9

[3] Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke.
2015. Automated Software Transplantation. In Int. Symp. on Soft. Testing and
Analysis (ISSTA). 257–269. https://doi.org/10.1145/2771783.2771796

[4] Micheal Beetz and Drew McDermott. 1994. Improving Robot Plans During Their
Execution. In Int. Conf. on AI Planning and Scheduling (AIPS). 7–12.

[5] Javier Cámara, David Garlan, Bradley Schmerl, and Ashutosh Pandey. 2015.
Optimal Planning for Architecture-based Self-adaptation via Model Checking of
Stochastic Games. In Symp. on Applied Computing (SAC ’15). 428–435.

[6] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa
Villani. 2005. An Approach for QoS-aware Service Composition Based on Genetic
Algorithms. In Conf. on Genetic and Evol. Computation (GECCO). 1069–1075.

[7] Betty H. C. Cheng, Andres J. Ramirez, and Philip K. McKinley. 2013. Harnessing
Evolutionary Computation to Enable Dynamically Adaptive Systems to Manage
Uncertainty. In Workshop on Combining Modelling and Search-Based Soft. Eng.
(CMSBSE).

[8] Shang-Wen Cheng and David Garlan. 2012. Stitch: A Language for Architecture-
based Self-adaptation. J. Syst. Softw. 85, 12 (2012), 2860–2875.

[9] Zack Coker, David Garlan, and Claire Le Goues. 2015. SASS: Self-adaptation
Using Stochastic Search. In Int. Symp. on Soft. Eng. for Adaptive and Self-Managing
Syst. (SEAMS). 168–174.

[10] Rogério et al. de Lemos. 2013. Software Engineering for Self-Adaptive Systems: A
Second Research Roadmap. Springer, Berlin, Heidelberg, 1–32.

[11] John M. Ewing and Daniel A. Menascé. 2014. A Meta-controller Method for
Improving Run-time Self-architecting in SOA Systems. In 5th ACM/SPEC Int.
Conf. on Performance Eng. (ICPE ’14). 173–184.

[12] Erik M. Fredericks, Byron DeVries, and Betty H. C. Cheng. 2014. Towards Run-
time Adaptation of Test Cases for Self-adaptive Systems in the Face of Uncertainty.
In Int. Symp. on Soft. Eng. for Adaptive and Self-Managing Syst. (SEAMS). 17–26.

[13] S. Gerasimou, G. Tamburrelli, and R. Calinescu. 2015. Search-Based Synthesis of
Probabilistic Models for Quality-of-Service Software Engineering. In Int. Conf.
on Automated Soft. Eng. (ASE’15). 319–330.

[14] Alicia Grech and Julie Main. 2004. Case-Base Injection Schemes to Case Adaptation
Using Genetic Algorithms. Berlin, Heidelberg, 198–210.

[15] Mark Harman. 2007. The Current State and Future of Search Based Software
Engineering. In Int. Conf. on Soft. Eng. 342–357. https://doi.org/10.1109/FOSE.
2007.29

[16] Mark Harman, Yue Jia, William B. Langdon, Justyna Petke, Iman Hemati
Moghadam, Shin Yoo, and Fan Wu. 2014. Genetic Improvement for Adaptive
Software Engineering (Keynote). In Int. Symp. on Soft. Eng. for Adaptive and
Self-Managing Syst. (SEAMS). 1–4.

[17] Yanrong Hu and S. X. Yang. 2004. A knowledge based genetic algorithm for
path planning of a mobile robot. In Robotics and Automation, Vol. 5. 4350–4355.
https://doi.org/10.1109/ROBOT.2004.1302402

[18] Pooyan Jamshidi, Amir M Sharifloo, Claus Pahl, Andreas Metzger, and Giovani
Estrada. 2015. Self-learning cloud controllers: Fuzzy q-learning for knowledge
evolution. In Cloud and Autonomic Computing (ICCAC), 2015 International Con-
ference on. IEEE, 208–211.

[19] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. 1998.
Planning and acting in partially observable stochastic domains. ARTIFICIAL
INTELLIGENCE 101 (1998), 99–134.

[20] JeffreyO. Kephart andDavidM. Chess. 2003. The Vision of Autonomic Computing.
Computer 36, 1 (2003), 41–50.

[21] Narges Khakpour, Saeed Jalili, Carolyn Talcott, Marjan Sirjani, and Moham-
madreza Mousavi. 2012. Formal modeling of evolving self-adaptive systems.
Science of Computer Programming 78, 1 (2012), 3–26.

[22] Dongsun Kim and Sooyong Park. 2009. Reinforcement learning-based dynamic
adaptation planning method for architecture-based self-managed software. In
Software Engineering for Adaptive and Self-Managing Systems, 2009. SEAMS’09.
ICSE Workshop on. IEEE, 76–85.

[23] Cristian Klein, Martina Maggio, Karl-Erik AArzén, and Francisco Hernández-
Rodriguez. 2014. Brownout: Building More Robust Cloud Applications. In Int.
Conf. on Soft. Eng. (ICSE ’14). 700–711.

[24] John R. Koza. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA.

[25] John R. Koza. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA.

[26] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of
Probabilistic Real-time Systems. In Int. Conf. on Computer Aided Verification (CAV
’11). 585–591.

[27] Neal Lesh, Nathaniel Martin, and James Allen. 1998. Improving Big Plans. In
Conf. on Artificial Intelligence/Innovative Applications of Artificial Intelligence

(AAAI/IAAI). 860–867.
[28] S. J. Louis and J. McDonnell. 2004. Learning with Case-injected Genetic Algo-

rithms. Trans. Evol. Comp 8, 4 (2004), 316–328. https://doi.org/10.1109/TEVC.
2004.823466

[29] Sushil J. Louis and Gregory J. E. Rawlins. 1992. Syntactic Analysis of Convergence
in Genetic Algorithms. In Found. of Genetic Algorithms 2. Morgan Kaufmann,
141–151.

[30] Mausam and Andrey Kolobov. 2012. Planning with Markov Decision Processes:
An AI Perspective. Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing 6, 1 (2012), 1–210. https://doi.org/10.2200/S00426ED1V01Y201206AIM017

[31] David J. Montana. 1995. Strongly Typed Genetic Programming. Evol. Comput. 3,
2 (1995), 199–230.

[32] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2015.
Proactive Self-adaptation Under Uncertainty: A Probabilistic Model Checking
Approach. In European Softw. Eng. Conf. and the Symp. on the Found. of Soft. Eng.
(ESEC/FSE 15). 1–12.

[33] H. MuÃśoz-Avila and M. T. Cox. 2008. Case-Based Plan Adaptation: An Analysis
and Review. IEEE Intelligent Syst. 23, 4 (2008), 75–81. https://doi.org/10.1109/MIS.
2008.59

[34] Ashutosh Pandey, Gabriel A Moreno, Javier Cámara, and David Garlan. 2016.
Hybrid Planning for Decision Making in Self-adaptive Systems. In Int. Conf. on
Self-Adaptive and Self-Organizing Syst. (SASO ’16). 12–16.

[35] Gustavo G. Pascual, Mónica Pinto, and Lidia Fuentes. 2013. Run-time Adaptation
of Mobile Applications Using Genetic Algorithms. In Int. Symp. on Soft. Eng. for
Adaptive and Self-Managing Syst. (SEAMS). 73–82.

[36] Mateusz Pawlik and Nikolaus Augsten. 2015. Efficient Computation of the
Tree Edit Distance. ACM Trans. Database Syst. 40, 1, Article 3 (2015), 40 pages.
https://doi.org/10.1145/2699485

[37] Riccardo Poli, William B Langdon, Nicholas F McPhee, and John R Koza. 2008. A
field guide to genetic programming. Lulu.com.

[38] Andres J. Ramirez, Betty H.C. Cheng, Philip K. McKinley, and Benjamin E. Beck-
mann. 2010. Automatically Generating Adaptive Logic to Balance Non-functional
Tradeoffs During Reconfiguration. In Int. Conf. on Autonomic Computing (ICAC).
225–234.

[39] V. Roberge, M. Tarbouchi, and G. Labonte. 2013. Comparison of Parallel Genetic
Algorithm and Particle Swarm Optimization for Real-Time UAV Path Planning.
IEEE Trans. on Industrial Informatics 9, 1 (2013), 132–141. https://doi.org/10.1109/
TII.2012.2198665

[40] Amir Molzam Sharifloo, Andreas Metzger, Clément Quinton, Luciano Baresi, and
Klaus Pohl. 2016. Learning and Evolution in Dynamic Software Product Lines.
In Proceedings of the 11th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS ’16). ACM, New York, NY, USA,
158–164. https://doi.org/10.1145/2897053.2897058

[41] E. L. Da Silva, H. A. Gil, and J. M. Areiza. 2000. Transmission network expansion
planning under an improved genetic algorithm. IEEE Trans. on Power Syst. 15, 3
(2000), 1168–1174.

[42] Tyron Stading, Petros Maniatis, and Mary Baker. 2002. Peer-to-Peer Caching
Schemes to Address Flash Crowds. In Int. Workshop on Peer-to-Peer Systems (IPTPS
’02). 203–213.

[43] Daniel Sykes, William Heaven, Jeff Magee, and Jeff Kramer. 2007. Plan-directed
Architectural Change for Autonomous Systems. In Conf. on Specification and
Verification of Component-based Syst. (SAVCBS ’07). 15–21.

[44] Leonardo Trujillo. 2011. Genetic programming with one-point crossover and
subtree mutation for effective problem solving and bloat control. Soft. Computing
15, 8 (2011), 1551–1567.

[45] Manuela M. Veloso. 1994. Flexible Strategy Learning: Analogical Replay of
Problem Solving Episodes. In Nat. Conf. on Artificial Intelligence (AAAI ’94).
595–600.

[46] Thomas Vogel and Holger Giese. 2010. Adaptation and Abstract Runtime Models.
In Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS ’10). ACM, New York, NY, USA, 39–48. https:
//doi.org/10.1145/1808984.1808989

[47] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. 2001. SPEA2: Improving the
Strength Pareto Evolutionary Algorithm. Technical Report.

[48] Parisa Zoghi, Mark Shtern, Marin Litoiu, and Hamoun Ghanbari. 2016. Designing
Adaptive Applications Deployed on Cloud Environments. Trans. Auton. Adapt.
Syst. 10, 4, Article 25 (2016), 26 pages.

https://doi.org/10.1007/s10270-012-0301-9
https://doi.org/10.1145/2771783.2771796
https://doi.org/10.1109/FOSE.2007.29
https://doi.org/10.1109/FOSE.2007.29
https://doi.org/10.1109/ROBOT.2004.1302402
https://doi.org/10.1109/TEVC.2004.823466
https://doi.org/10.1109/TEVC.2004.823466
https://doi.org/10.2200/S00426ED1V01Y201206AIM017
https://doi.org/10.1109/MIS.2008.59
https://doi.org/10.1109/MIS.2008.59
https://doi.org/10.1145/2699485
https://doi.org/10.1109/TII.2012.2198665
https://doi.org/10.1109/TII.2012.2198665
https://doi.org/10.1145/2897053.2897058
https://doi.org/10.1145/1808984.1808989
https://doi.org/10.1145/1808984.1808989

	Abstract
	1 Introduction
	2 Background
	2.1 Self-* Planners
	2.2 Genetic Programming

	3 Running Scenario
	3.1 Scenario
	3.2 Quality objectives
	3.3 Adaptation tactics
	3.4 Post-design-time adaptation

	4 Approach
	4.1 Representation
	4.2 Mutation and Crossover
	4.3 Fitness
	4.4 Plan Reuse

	5 Evaluation
	5.1 Comparative Study
	5.2 Reuse-Enabling Techniques
	5.3 Unforeseen Adaptation Scenarios
	5.4 Diversity

	6 Related Work
	7 Conclusion
	References

