
Automated identification and repair of state-based
framework directive violations

Ph.D. Dissertation Proposal
Zack Coker

zfc@cs.cmu.edu

August 28th 2018

1 Abstract

Professional developers use software frameworks for the benefits gained from architec-
tural reuse: the process of applying previously proven designs to new applications in a
given domain, which saves developers time and reduces project uncertainty. Unfortu-
nately, for frameworks to support architectural reuse, they must make a set of assump-
tions to interact with a diverse set of applications. These assumptions challenge develop-
ers because they create a set of constraints imposed by the framework. To investigate how
framework imposed constraints affect developers, I conducted a human study on debug-
ging violations of framework constraints. From this study, I found that the most time-
consuming debugging difficulty developers faced was caused by the state restrictions on
objects in the framework. I also found that developers had difficulty fixing state-based
framework bugs, even when provided the failure location, implying that fixing the bug is
the hardest step of the framework application debugging process. To address this issue,
I propose FrameFix, a technique to automatically repair state violations in frameworks.
The central innovations in this technique are a state-based fault localization approach
and a template-based repair approach for these violations. I will evaluate the accuracy
of the generated repairs on sample programs with framework state violations. The ulti-
mate goal of the proposed work is to provide a way for framework designers to improve
developer experience and reduce the challenges of framework development.

2 Introduction

Software frameworks increase the productivity of professional software developers [31].
Due to the known and substantial productivity gains, frameworks are an important tool
of the software development industry. The importance of frameworks is demonstrated
by the large number of applications built with them. For example, the Google Play Store
contained 3.5 million Android applications in December 2017, all built on the Android
framework [1]. One of the main aspects of frameworks that leads to large developer pro-
ductivity gains is architectural reuse [4]. In the context of frameworks, architectural reuse
means using the general parts of a proven framework application design in a new con-
text. The architecture in architectural reuse refers to the static class structure of internal

1

framework classes, as well as the dynamic protocols of framework applications. Archi-
tectural reuse allows developers to re-purpose a software design that has been proven to
work for a given domain to their unique application [21].

While developers receive a large benefit from architectural reuse in frameworks, de-
velopers that use frameworks still face unique challenges. Framework development dif-
fers from other forms of development due to designs based on inversion of control and
the heavy use of object protocols. Inversion of control is the design style where the prebuilt
framework controls the application’s flow of data and execution. This design style is in
contrast to development with libraries, where the developer’s unique part of the appli-
cation controls both the flow of data and execution and also uses library functions when
needed. Object protocols are the limitations on the object’s methods when the object is in
different states (e.g., a file object can only use the write method when it is open). Object
protocols occur in many forms of programming, but framework development is unique
because frameworks heavily use object protocols.

Multiple studies have investigated aspects of the challenges of developing framework
applications. Jaspan and Aldrich created an approach to specifying and enforcing the
interaction constraints between frameworks and plugins (the unique aspects of an appli-
cation that use the framework) [28, 29]. Fairbanks et al. captured common code patterns
in framework with design fragments [19]. And Ko et al. categorized six learning barriers
for new users of frameworks [36]. While these research efforts made progress on reduc-
ing the challenges of framework programming, multiple challenges currently still exist.
A recent (August 14th, 2018) query on StackOverflow, a popular question and answer site
for developers, shows that 7 of the top 24 tagged questions were on frameworks (shown
in Figure 1) [2]. These framework categories had over three million questions.

To investigate the current challenges of framework development, my co-investigators
and I studied the challenges of debugging framework applications. I found that repairs
with framework imposed state constraints, repairs that involved understanding when
values and method calls were valid in the framework application, were particularly chal-
lenging for developers. Developers struggled with these repairs, even when the failure
location was provided [12].

These results motivate the need for an automated technique for repairing state-based
constraints. I propose an automated repair technique for framework state constraints that
exploits how framework state constraints limit the number of repair options. I will eval-
uate the proposed technique on its accuracy and generality. Accurate, in the context of the
automated repair technique, means that the repair technique removes the specified fault
while retaining specified functionality. A repair technique can only be practically useful if
it is accurate, and thus the repair technique should be evaluated on its accuracy. Generality
means that the technique can apply to both state constraints in the same framework and
to state constraints in other frameworks. A state constraint repair technique should be
able to apply to more state constraints than those that were used to build the technique,
so the repair technique should also be evaluated on its generality.

2

Figure 1: The most popular tagged questions on StackOverflow on August 14th, 2018.
The tags surrounded by red boxes are tags for questions about frameworks.

The previous paragraph is summarized into the following thesis statement:

Thesis statement: Framework application developers encounter distinct challenges when
reusing the architecture provided by frameworks, such as framework state constraints. An au-
tomated repair technique that exploits the similarities between framework state constraints can fix
violations of these constraints in an accurate and general manner.

A key component of the automated repair technique, referred to as FrameFix, is a
tool to detect framework state constraint violations. The state constraint detection tool
consists of two subcomponents:

1. a language for specifying framework state constraints

2. a hybrid (static/dynamic) analysis to identify and localize violations in framework
applications

The first subcomponent, a specification language for framework constraints, will allow
the designers of a framework to specify the state constraints in ways that all users of
FrameFix, the proposed automated repair approach, will benefit. This language will ei-
ther be a language created for the proposed projects or an extension to a previous frame-
work specification language. Currently, frameworks impose state constraints on appli-
cations in such a way that violations of these constraints are often caught only when
the application crashes. Framework designers, or someone else that has knowledge of

3

important framework state, could specify the framework constraints once and have the
constraints automatically checked for all developers that use the framework, improving
the experience of multiple developers. The other subcomponent, the hybrid analysis, will
allow the tool to check state-based faults that can be identified before running the appli-
cation or through the execution of the application.

With the help of the state constraint detection tool, the repair technique will use in-
sights from prior work, such as template-based repair [33] and the heuristic generate-
and-evaluate design [64], to automatically repair state faults in framework applica-
tions. The automated repair approach will use the state constraint tool to both localize
the fault for the automated repair process and to verify when the fault has been removed.
Once the fault location is known, FrameFix will generate multiple possible fixes by auto-
matically applying pre-created repair templates to these faults. The repair technique will
evaluate the possible fixes against and set of test cases and the fault identified by the state
constraint tool. The repair technique will repeatedly generate possible solutions until a
repair that meets the evaluation criteria has been created.

I will evaluate both the accuracy and generality of the automated repair process. I will
evaluate the technique’s accuracy with a set of applications with framework state con-
straints. I will also evaluate the fault localization and the repair technique individually, to
determine possible future improvements. Finally, I will analyze the technique’s possible
fixes of framework state constraints in other frameworks to evaluate the generality of the
approach.

For this thesis, I will draw knowledge gained from my previous investigations into
a genetic programming planner for self-adaptive systems, which proposed plans in a
similar approach to how automated repair techniques propose possible fixes [34]. I will
also use static analysis and dynamic analysis experienced from previous studies to build
the directive violation detection tool [10, 11].

The proposed contributions of this thesis are:,

• A categorization of the functional effects of framework directive violations in the
Android operating system (completed) [12]

• An analysis of the challenges that developers encounter when debugging frame-
work directive violations through a human study (completed) [12]

• A tool that automatically identifies and localizes state-based directive violations in
an application

• An automatic repair technique that repairs state violations in frameworks

The rest of this proposal is organized as follows. Section 3 first presents background
and a motivating example. Then, I discuss the previously completed investigation into
framework debugging challenges in Section 4, which provides motivation for the focus on
framework state constraints and the proposed automated repair technique. Next I present
a high-level overview of the proposed automated repair technique 5. After I explain the
high-level overview of the proposed repair approach, I elaborate on the two proposed
tools in the thesis:

4

1. the tool for automatically detecting framework state constraints (Section 6)

2. the tool for automatically repairing framework state constraint violations (Section 7)

I end the proposal with a discussion of possible risks in Section 8, the proposed thesis
schedule in Section 9, and conclude the proposal in Section 10.

3 Background

In this section, I first discuss the topics and terminology used in this proposal (Section 3.1).
Second, I provide an example that illustrates the principle problem addressed by this
proposal (Section 3.2).

3.1 Relevant and Related Terminology

Frameworks provide a set of interfaces and classes that reduce the cost to achieve a general
goal [37]. Application developers can use frameworks to achieve a specific task by writing
a plugin, an extension of the framework to achieve a task. Developers create plugins to
achieve specific goals through extending a defined framework interface. In this proposal,
I will use the term application as a general term for a program. This program can be created
with a framework or without one. I will use the term plugin to specify an extension to a
framework that produces a complete application when attached to the framework. The
framework typically calls plugin code through inversion of control, a design in which the
core framework code, not the plugin-specific code, controls the data and execution flow
of a plugin [32]. Frameworks usually achieve inversion of control through extending
abstract methods.

Object protocols, the ordering constraints on object methods calls [6], are important
when developing with frameworks. One typical example of an object protocol is the file
object protocol, where a developer must open a file before closing the file. Prior work
has demonstrated how object protocols are fundamental to programming with a frame-
work [4].

Object protocols can be described as a graph of typestates, object states in which only
a subset of the object’s methods are allowed [59]. Using the file example, a file object’s
typestates would include the opened state and the closed state, and file reads could occur
in the opened state but not the closed state. Object protocols, such as the file object pro-
tocol, occur in code that does not use a framework. However, frameworks rely on object
protocols and change the typestates of objects in internal framework code [4], and thus,
plugin developers must be aware of the possible object states when the framework calls
their plugin.

Session Types are a specification approach to sequenced interactions [25]. Prior research
has demonstrated how session types can be applied to the interactions of multiple actors
at once [26]. Dezani-Ciancaglini and de’Liguoro present a survey of session type pa-
pers and include demonstrations of how session types can be used to maintain values in
sessions (correspondence assertions) and how session types can be applied in functional
and object oriented languages [18]. Session types would have limited applicability to the

5

proposed tools because the proposed tools are focused on actions that are allowed or dis-
allowed in certain states and not the communication sequences of different components.

Directives are unexpected specifications for how to use a class or method correctly [16].
An example, with the necessary context, is explained in Section 3.2. Prior work has pro-
posed classification schemes for directives. One classification scheme was based on the
abnormal aspect specified in the directive (e.g., the calling restrictions, method limita-
tions, or side-effects) [16] while the other focused on the segment of code covered by the
directive (e.g., line, method, or object) [48]. Another investigation found that develop-
ers were more likely to successfully debug applications with directive violations when
developers were presented the directives important to the problem’s context [17]. Other
researchers have investigated certain directive categories: directives specifying how to
extend objects to implement the framework [9] and parameter usage constraints [68]. The
tools in this proposal use directives as a way to identify framework state constraints.

Debugging is defined as the process of identifying and correcting the cause of a soft-
ware failure [67]. Prior work in debugging found that locating the failure, referred to as
fault localization [13], was the main cost of the debugging process [61]. More recent in-
vestigations have found that developers use scent finding when locating the failure [38]
and the ability to easily answer dataflow questions can significantly reduce debugging
time [35]. Another study has found that developers encounter design decisions during
the debugging process, such as choosing the correct location to fix incorrect data passed
between multiple components [49].

Automated Program Repair is an area of research that focuses on removing identified
software failures through proposed patches that are generated without human interven-
tion. Many repair techniques use generate-and-validate to produce repairs, typified by
approaches like GenProg [64, 41]. Approaches that use generate-and-validate create pos-
sible repair options and then evaluate those possible repairs on a set of program specifi-
cations, such as test cases. In the case where techniques use test cases as specifications,
the test case set usually consists of one or more failing test cases and multiple passing test
cases. The techniques use the failing test cases to to determine when the problem to repair
and when the problem is fixed. The techniques use the passing test cases to determine if
possible fixes retain the required functionality of the application. One notable family of
generate-and-validate techniques is heuristic repair techniques, which repeatedly generate
possible fixes until a valid fix is found. The typical heuristic repair process starts by locat-
ing a possible fault and then generating one or more possible fixes. The techniques then
evaluate if the possible fixes are valid fixes. If a possible fix produces the required target
functionality, then the possible fix is considered a successful repair. If none of the possible
fixes produce the required target functionality then the techniques repeats the generate
and evaluate process. Some other examples include AE [65], RSRepair [55], and SPR [44].

In contrast to the heuristic repair approach, the other major family of generate-and-
validate techniques are semantic-based repair techniques, such as Angelix [47], Sem-
Fix [52], DirectFix [46], Qlose [15] and S3 [40]. Semantic-based program repair uses dynamic
semantic analysis, commonly symbolic execution, and a set of test cases to infer desired
program behavior. These techniques treat the program as an equation and use the test
cases as constraints on the equations. Semantic-based techniques produce a repair by
solving the equation, adjusting the program so that the program produces all desired

6

Figure 2: An example of the Fragment class taken from the Android developer documen-
tation. This diagram demonstrates how the Fragment class is used in an Activity.

outputs from the provided inputs. While these techniques have shown promise, they are
currently limited to fixing integer and boolean expression, and thus could only be used
to repair a small set of state-based framework violations.

3.2 Motivating Example

An important part of using a framework is understanding how to use a framework cor-
rectly. Framework developers document the guidelines for how to use the framework
API (Application Programming Interface) with directives. These directives can cover a
wide range of guidelines, including state-based specifications.

One example of a state-based directive is a directive from the Fragment class in Android,
a framework for developing mobile applications. The Android Fragment class represents a
reusable component of an Android application’s user interface. A picture of an Android
Fragment in an example Android Application is shown in Figure 2, which demonstrates
how Fragments are a subcomponent of the larger Activity, which is the class that controls
the lifecycle of an Android application. The documentation for the Fragment class states
that setArguments can only be called on a Fragment before the Fragment is initialized. De-
velopers can find this constraint challenging to follow, since developers may place a call
to setArguments in a method that the framework could call after the Fragment has been ini-
tialized (this confusion could be caused by inversion of control, since developers would
probably have a better understanding of the initialization state of the Fragment if the de-
veloper explicitly controlled all calls to the method in the application).

One example of developer difficulty with this directive is shown in a StackOverflow
question1, where a Fragment is incorrectly updated by calling setArguments. In this question,
the application developer is trying to adjust the user interface of a Fragment based on the
user’s selection from a list. A quick summary of the code from the question is posted
in Figure 3. The question also mentions that the error message reads “Fragment already

1https://stackoverflow.com/questions/19999172/fragment-already-active-when-trying-to-
setarguments

7

1 @Override
2 publ ic void onLis t I temCl ick (ListView l , View v , i n t pos i t ion , long id) {
3 //f i n d s a previously i n i t i a l i z e d DetailFragment
4 DetailFragment detai lFragment = (DetailFragment) getFragementManager () . findFragmentById (

detai lFragmentID) ;
5 //a d j u s t the values in the bundle o b j e c t based on user s e l e c t i o n
6 . . . //e l ided f o r s i m p l i c i t y
7 detai lFragment . setArguments (bundle) ; // i l l e g a l setArguments c a l l
8 detai lFragment . setUpLayout () ; //update the UI

Figure 3: A condensed summary of the code example from the StackOverflow question
that misused the setArguments method.

active”. In this question, the question asker is confused about the methods allowed in
Fragment states. The question asker does not realize that the setArguments method is only
allowed before the Fragment has already been initialized. Even more important is that the
question asker does not realize what the alternatives are in the framework to update the
desired Fragment, such as how to get the Bundle of the currently initialized Fragment, how to
directly change the values of the Fragment, or how to move the setArguments method to a
location in the code where the error would be removed while still retaining functionality.

4 Challenges of debugging directive violations

My goal with this thesis is to improve the framework development process. While there is
previous research on the topic, the research does not provide enough insight on the possi-
ble areas of improvement in the framework development process. Prior work has found
that developers have difficulty with framework constraints — developers ask questions
on framework constraints in question and answer boards (and are willing to wait multi-
ple hours for a response) [30] and developers miss important directives, even for small
sections of code [17]. One of these works demonstrated that directive knowledge is help-
ful for debugging [17]. Another paper has created a taxonomy of the Android framework
problems found in open source commits [20]. However, the related work provided lim-
ited help when understanding the problem that developers face while debugging frame-
work applications, since those work investigated different scenarios or different sources
of qualitative data. Thus, I and other co-investigators performed a human-focused study
into the process that developers follow to debug framework application issues.

In this section, I first present the methodology for the human study into debugging
framework application scenarios (Section 4.1). I then present a summary of the results
from the human study in Section 4.2. Finally, I compare the study to related work in
Section 4.3. A further explanation of the topics covered in this section can be found in
Coker et al. [12].

4.1 Debugging Study Methodology

While there are multiple possible approaches to an exploratory study on frameworks, I
decided to focus on controlled framework debugging tasks. This approach allowed me

8

to investigate the process that multiple developers took to debug the same problems,
from which I could identify interesting patterns in developers’ debugging processes. The
trade-off for this approach is that if the scenarios do not accurately represent the situa-
tions that developers encounter when debugging framework applications, then the study
may lead to conclusions that do not apply to real development situations. To make the
scenarios as realistic as possible, I created framework debugging scenarios that focused
on fixing violations of framework documentation requirements and that were based on
real framework application bugs taken from StackOverflow when possible.

To conduct the human study into the challenges of debugging framework misuses, I
first selected two frameworks:

1. Android

2. the Robotic Operating System (ROS), a robotic framework.

I selected the Android framework because Android contained many instances object pro-
tocols and is popular on StackOverflow. I selected the ROS framework because of the pos-
sible differences caused by the different architectural approach of ROS applications: ROS
applications are organized as a collection of nodes that communicate in an event-driven
architecture while Android applications are designed around the lifecycle callbacks of
major components, such as the Activity class and the Fragment class. Both frameworks
also had an active local user base so I could collect enough participants for the study.

The next step was to design the tasks that participants would perform. I started the
task creation process by extracting a set of 45 Android Fragment directives and 28 ROS
directives from official documentation sources which I could then use to narrow down
to a smaller set of tasks for the study. For the Android study, I then looked at questions
from StackOverflow that covered the directives interest and created tasks that mimicked
the code in the questions. I tried to take a similar approach for ROS, but I was unable to
find questions of interest. Thus, I created scenarios that violated the ROS directives.

Once I created the scenarios, I recruited a convenience sample (a non-random collec-
tion of participants drawn from a close or easy-to-contact subset of the full population of
interest) of 15 Android participants and 12 ROS participants to perform 7 Android tasks
and 3 ROS tasks.

An example of a task is shown in Figure 4. When the user presses the CHANGE COLORS!

button, the color of the SHOW NOTIFICATION button is set through a call to setArguments. When
the HEADS UP tab is initialized after the button is pressed, this approach works. However,
when the user has initialized the HEADS UP tab, by opening the tab, and then navigates back
to the CHANGE COLOR tab and presses the CHANGE COLORS! button, the application violates the
directive discussed in Section 3.2 and crashes. Participants were asked to fix the applica-
tion so the crash is removed and the button successfully changes colors in that case.

I assigned participants to the tasks so that multiple participants performed each task.
The participants were told the general problem with the application and instructed to
execute the application to perform the directive violation. During this process, I did not
inform the participants of the specific directive violations in the application. I then in-
structed participants to perform think-aloud debugging, an approach where participants

9

(a) The starting view of An-
droid Task 5. The problem
with the task is the behavior
of the CHANGE COLORS! button.

(b) The desired behavior
of the application. When
the CHANGE COLORS! button
is pressed, it changes the
SHOW NOTIFICATION button’s
color. However, at the start
of the task, this functionally
only worked if the user
pressed the CHANGE COLORS!

button before opening the
HEADS UP tab.

(c) The crash that occurs
when participants first open
the HEADS UP tab and then
press the CHANGE COLORS!

button. Participants were
asked to remove this crash so
that the button successfully
changes colors, even if the
participant had navigated to
the HEADS UP tab first.

Figure 4: Android Task 5. Participants were given an application that crashed when
participants interacted with the application in a certain way and asked to fix the crash.

explain their thought process so the researcher can gain more insight into their prob-
lems [50]. During the sessions, I recorded the participants as they debugged the directive
violations. Afterwards, I analyzed the recording to gain insight into the process of debug-
ging framework directive violations.

4.2 Results from the human study on directive violations

From the human study, I found that participants encountered multiple difficulties with
object protocols in the frameworks and also with the inversion of control organization of
frameworks. For example, while creating the fix to the directive violation, three partici-

10

pants tried to access user input before the user could input a value, causing the program to
eventually display the wrong value. While completely reducing these challenges would
be difficult, a tool that could notify developers of incorrect state-based interactions would
be a start in the right direction.

In the Android investigation, the tasks that participants spent the longest on were
tasks that involved object states. For example, the task where participants had to display
the user selected input was one of the most difficult tasks, partially because participants
had to not only determine how to access the two different input components uniquely,
but also how to access the components after the user had entered a value. This leads
to the hypothesis that state-based directive violations are particularly difficult to debug,
and a tool that could provide automated support would be helpful. Another exciting
findings from the study is that contrary to the results presented by Vessey [61], I found
that developers spent a significant amount of time determining how to fix a directive vi-
olation when developers were told the directive violation in the error message. Taken
together, these results lead to the hypothesis that finding the fault may not be the most
difficult aspect when fixing framework directives. Instead, producing the correct repair
may be the most challenging step for humans when debugging framework directive vio-
lations. Thus, an automated repair tool would be helpful in providing possible fixes for
state-based directive violation.

4.3 Related Work

The closest study to the human study discussed in this section is the investigation into
the challenges faced by new framework users when developing framework plugins [36].
While the human study discussed in this section focused on debugging challenges and
more experienced developers, some of the problems encountered in both studies were
the same, such as the difficulty of understanding how the internal framework code af-
fected the code segment of interest and difficulties using debuggers. Jaspan and Aldrich
found that developers had difficulties with object protocols by examining the questions
asked on Spring and ASP.NET forums [30]. Jaspan and Aldrich also noted that develop-
ers were willing to wait multiple hours for an answer to their questions about the frame-
works, demonstrating the degree of difficulties that framework application developers
face. While this study and my study both used developer forums, my study investigated
developers in person, leading to a better understanding of the challenges that developers
face during the framework application debugging process. Another closely related work
was done by Dekel and Herbsleb [17]. This study demonstrated that knowledge of rel-
evant directives increased the number of developers that finish library and framework
debugging tasks in a set time limit. This study focused on evaluating a tool that noti-
fied developers of relevant directives, and not the challenges that developers faced while
finding or applying directives.

A couple of papers have addressed the topic of Android Application Debugging. Tan
et al. [60] investigated automatic repair of crashing Android applications, a subset of the
violation consequences presented in the human study of this section. Fan et al. [20] col-
lected Android exception traces and classified the exceptions based on the type of error
(e.g., Lifecycle error, UI Update Error, Framework Constraint Error). Instead of only fo-

11

cusing on exceptions, I investigated the way that framework applications handle directive
violations and found a more diverse set of functional effects.

5 Brief overview of proposed tools

The human study into debugging directive violations found that participants had particu-
lar difficulty with state-based directives, similar to the directive shown in Section 3.2 [12].
Participants’ difficulties were caused by multiple factors, e.g., a framework changing the
state of objects in internal framework code, or the interaction of multiple objects in differ-
ent states [12]. While some directive violations could be automatically enforced by simple
static analysis, state-based directives are more difficult to check automatically, since they
require a specification of the important states of an object and the object’s state transi-
tions. Developers would benefit from an approach that automatically repairs state-based
directive violations.

Figure 5: The process diagram of the FrameFix repair technique. The state-based directive
violation detection tool is used to both identify the fault location and to evaluate possible
repairs. The technique starts by identifying the fault location. The fault information is
used with a template repair approach (or a statistical model repair approach) to produce
a set of possible repairs. The repairs are then evaluated against a set of test cases and
the violation detection tool to see if the repair is valid. The repair approach will continue
to produce and evaluate repairs until it produces a valid fix. This technique is further
described in Section 7.1.

12

This motivates FrameFix, an automated repair approach to state based framework
directive violations. The components of the proposed automated repair tool, FrameFix,
are shown and explained in Figure 5. One key aspect of this diagram is how the repair
process will use the state based framework directive violation tool, designated by the
orange boxes. The state based directive violation tool is needed in both the identification
of the fault to repair and to verify that the problem has been removed.

6 Automatic detection of state-based directive violations

The state-based detection tool must be able to determine if the application violations the directive to
be useful in the automated repair process. This requirement consists of two main subcom-
ponents. The first is that the tool must allow developers to specify directives in a way that can
be unambiguously checked by the tool. A goal of this specification would be that directives
could be specified once and then checked in different contexts. This single specification
goal would reduce the requirements for the tool to be useful, increasing the chance it will
be accepted by the development community. In this case, one knowledgeable user, such
as the framework designer, could encode the rules so that they are automatically checked
for all users of the tool. This approach could also be used to assist new developers of the
framework with extra checks. The second subcomponent is that the tool must be able to
determine if the application violates the directive. Since some directives are difficult to deter-
mine statically, and may be undecidable, this means the tool will need to perform both
static and dynamic directive violation checks.

Section 6.1 discusses the current results on this project. Section 6.2 discusses the pro-
posed evaluation for this research thrust. Then, Section 6.3 compares the proposed tool
and evaluation to related work.

6.1 Current results for the directive violation identification tool

At the time of this proposal, I am investigating and understanding state-based directives,
to inform the creation of the directive violation identification tool. I have collected a set of
16 state-based directives from the Android developer’s guide and the documentation for
four classes: Activity, Fragment, Dialog, and Context. I have used this sample of directives
to understand the variety of state-based directives and understand the requirements of a
state-based specification language for an automated checking tool. I am also investigating
a set of 15 ROS bug to also support directives in ROS.

Once I have finished investigating state-based directives, the next step will be to cre-
ate the static analysis. I will create a tool that implements the static analysis defined by
the dataflow analysis specification in Figure 6. Dataflow analysis is a technique to track
possible variable values in different locations of a method or program. Figure 6 describes
the static analysis using the dataflow analysis format in Compilers: Principles, Techniques,
and Tools [3]. This dataflow analysis will allow the tool to statically determine if method
calls violate state-based directives.

For example, consider the directive only call getActivity() when the Fragment is attached
to an Activity. Using a sample application from the human study [12], the application

13

Domain: Set of important states in the application, which can often be determined from
method calls, a previous textual scan of the application’s source, or are pre-defined
Lattice definition: For a single directive, ⊥ = ∅, each subsequent level is all
combinations in (n

k) where n is the level from the top of the lattice (for second level n = 1)
and k is the number of important states. At the top of the lattice, n = k, which means all
states are unknown (e.g. anyState for all objects that are important to the directive).
Direction: Forward
Transfer function: additionalStates

⋃
currentStates− (statesEnded) where

additionalStates is the important states added by a method call, currentStates is the set of
previous important states, and statesEnded is the set of states that end at the current
method transition or are canceled by the states in additionalStates.
Boundary: OUT[ENTRY] = ∅ ∨ the annotated input ∨ the input determined through
control flow
Meet operator:

⋃
Initialize: OUT[othernodes] = ∅
Interprocedural meet: annotations, context sensitive dataflow from previous methods,
or computed from method’s control flow

Figure 6: The dataflow analysis specification for our static analysis approach to checking
state-based directive violations.

crashes when a Fragment is selected. This is due to a call to getActivity() that occurs be-
fore the Fragment is attached. However, the Fragment calls getActivity() in multiple places,
all but one of them when the Activity is attached to the Fragment. Using knowledge of
the control flow graph for the application and the Android Fragment lifecycle, it can be
deduced that all but one call is certainly correct (e.g. the call occurs in lifecycle phases
where the Activity is always attached. The only uncertain case occurs in a method that is
called from the parent Activity.

Figure 7 shows an example application where a method that calls getActivity() before
the Fragment is attached to an Activity. Using provided annotations from the Framework
designers, the tool could deduce that all Fragments in the application are in a possibly

1 @Override
2 publ ic void onTabSelected (ActionBar . Tab tab , FragmentTransaction f t) {
3 f t . r e p l a c e (R . id . conta iner , fragment) ;
4 i f (fragment i n s t a n c e o f OtherMetadataFragment) {
5 //the next l i n e c a l l s g e t A c t i v i t y before the Fragment i s at tached
6 ((OtherMetadataFragment) fragment) . d i s p l a y A c t i v i t y T i t l e () ;
7 }
8 }

Figure 7: An example call to getActivity() before the Fragment is attached to an Activity,
violating the directive and causing the application to crash.

14

unattached state at the start of onTabSelected. The tool would start the dataflow analysis
with all Fragments in the possibly unattached state, except for the initial Fragment that is
shown at the start of the application, since it was attached in a previous method that is
not shown. However, for this application, it can be deduced that an OtherMetadataFragment

is not the starting Fragment and thus is possibly unattached.
The lattice for this dataflow analysis would have a > of anyState, which represents

when the state cannot be determined for a Fragment, which is equal to the possibly unattached
state mentioned above. The states of a Fragment would consist of attachedToActivity and
notAttachedToActivity. Certain methods, can produce transfer states, while other methods
are only safe in specific states. Because displayActivityTitle always calls getActivity, the
displayActivityTitle is only safe when the fragment is in the attachedToActivity state. Due
to the fact that an OtherMetadataFragment is in the anyState initially, dataflow analysis can
be used to deduce that the Fragment state will not change when the displayActivityTitle

method is called since the replace method is not annotated as a method that changes the
attached state of a Fragment (the annotations are provided by the framework designer in
this example). Thus, displayActivityTitle will be called when the Fragment is in a possi-
bly uninitialized state, and the tool will display an error to the application developer.
If the tool performed a previous scan of the methods that could attach an Activity to
a Fragment, the tool would find that the application could only attach an Activity to a
Fragment in two locations: where the starting Fragment is attached (not shown), and at
the end of this method — onTabSelected. In that case, the tool could determine that the
OtherMetadataFragment has to be attached at the end of the method, so the call to displayActivityTitle

would violate the directive at least once.
Unfortunately, the static analysis works well only for directives that can be enforced

syntactically or whose relevant control flow can be determined unambiguously. Dynamic
analysis will be used to check the enforcement of directives which do not fit those two cat-
egories, such as restricting method calls when when a database is closed. The dynamic
analysis technique will execute applications, check if directives are violated during the
application execution, and notify developers if a violation occurs. A formal specification
of our dynamic analysis is written in Figure 8, and is based on the operational specifica-
tions defined by Leinhard et al. [43].

I have currently designed a first draft of the specification language (Figure 9) and
am now creating a tool that parses this language into the information required by an
automated checking tool. The tool is currently able to parse the specification language. I
am also working on creating static and dynamic analyses for specific directives.

6.2 Proposed evaluation of tool for automatic detection of state-based
directive violations

The state-based directive violations tool will be evaluated on four criteria:

1. recall

2. precision

3. generality

15

Variables in specification
m - a method
c - a class
D - a function <class, method, environment>→ boolean; a check if the class and
method are in the set of <class, method> tuples that trigger a directive check and if the
directive is violated in the current environment
e - the current environment that contains the app configuration information, outgoing
connections to databases, etc.
notify - a method that notifies tool users of a directive violation if one occurs
s - the statements in a method
MethodLookup - a function <c, m>→ <s,c’>; a conversion from the class and method of
the object to the statements in the object and the class for which the method is defined
Σ - the set of <class address, parameter address, method, stack frame> tuples
Stack Frame - {σ ∈ Σ

⋃
∅}

Address - {i ∈N|i is an address o f valid memory}
Heap - a function <i>→ c; a mapping of memory locations to classes defined at those
locations
H ∈ Heap

Method call semantics
Given:

c = H(i) //determine the class of the object in the method call statement

(s, c′) = MethodLookup(c, m) //convert a method and class to the expressions in the method and

the class where the method is defined

d = D(c′, m, e) //check if the method has a directive check and if the directive

is violated in the current environment; using c’ because the directives are specified

in the documentation for classes that are often parent classes of the current object,

d is true when there is a directive violation

σ′ = (i, i′, m, σ) //create a simplified stack frame with the new method and arguments

σ′ ∗ s,H → σ′ ∗ i′′,H′ //evaluating the method statement produces the return result i’’

Result:
if d then notify; σ ∗ i.m(i′),H → σ ∗ i′′,H′

Figure 8: The dynamic analysis specification of the directive violation tool using opera-
tional semantics. This tool checks for directive violations when a program calls methods
mentioned in state-based directives. If a directive violation is found, the analysis displays
a notification.

16

〈directive-specification〉 ::= 〈method-call-specification〉
| 〈field-specification〉

〈method-call-specification〉 ::= 〈method-call〉 [NOT] (ALLOW WHEN | REQUIRE)
〈reference-identifier-list〉 [NOT] IN 〈state-list〉

〈method-call〉 ::= 〈class〉.〈method-signature〉

〈reference-identifier-list〉 ::= 〈reference〉
| 〈reference〉, 〈reference-identifier-list〉

〈reference〉 ::= @〈ref-term〉

〈ref-term〉 ::= this
| super
| 〈ref-term〉.〈class-variable〉

〈state-list〉 ::= 〈state〉
| 〈state〉, 〈state-list〉

〈field-specification〉 ::= 〈object-field〉MUST BE SET IN 〈state-list〉 [TO 〈value〉]

Figure 9: The Backus-Naur Form formalism for state-based directive specifications..

4. suitability for use in automated repair approach.

The tool should be evaluated on recall and precision because that is an established way
to evaluate a fault localization technique [39]. Generality and suitability are important
because the eventual goal of this tool is to be used in a state-based automated repair
approach. Both are required to create a repair technique that can fix state-based directive
violations in framework applications. The tool will be designed to run on the full source
code of a framework application, so all experiments will test full applications.

I will evaluate the precision and recall of the tool by creating a dataset of state-based
directive violations from a single framework that contains enough examples of a appli-
cations with state-based directive violations to evaluate the tool. This framework will
likely be the Android framework, due to the prevalence of state-based directive violations
in the Android component lifecycles and the prior work I have done with the Android
frameworks. The ROS framework or another framework that contains enough examples
for evaluation are current alternative options. I will create the dataset using bug col-
lected from open-source sites, such as GitHub, along with applications created through
the combination of questions from developer forums, such as StackOverflow, and sample
applications. When collecting applications from GitHub and questions from StackOver-
flow, I will select the most popular applications and questions from the sites, using the
search options available on each site, that contain state-based directive violations (with
some filtering to ensure that the dataset does not consist of only a few directive viola-

17

tions repeated in different applications). The dataset will consist of at least 100 instances
of state-based directive violations that cover at least 15 different state-based directives
in a single framework. The dataset will contain applications that I take directly from
GitHub as well as applications that are based on StackOverflow questions. The bugs col-
lected from GitHub will allow evaluating the technique on large applications but may not
contain enough scenarios of interest, since it is currently difficult to search open-source
projects for bugs that are not easily found with a simple code pattern, and developers may
not commit these directive violations, since the directive violations may only occur in the
development period between commits. To include the application issues that develop-
ers encounter but do not commit, I will also create applications based on StackOverflow
questions and sample applications taken from official framework samples and tutorials,
if possible, or popular applications that use the framework on GitHub if I am unable to
find official applications. I will create applications in the dataset by modifying the sample
application to contain the scenario discussed in the StackOverflow question. I will also
add 10 applications to this dataset that contain correct state-based directive implementa-
tions. The 10 applications will contain at least 5 unique state-based directive instances. I
will use this dataset of 110 applications to evaluate recall and precision.

The first metric for evaluating the automated detection tool is recall. Recall is defined
as

recall =
o f caught violations

o f caught violations + # o f uncaught violations

This metric is important because the tool should be able to identify a state-based direc-
tive problem in the application when one exists. For the static analysis evaluation, the
goal will be to catch at least 80% of the violations (similar to other publications in the
area [66, 24, 53]) in the 100 faulty applications at the location where the directive viola-
tion occurs. The numerical specification of this goal, as well as other evaluation numbers
in the proposal, is designed to provide context on a reasonable standard that has been
demonstrated in similar prior work, and not to bind me or the committee to these evalu-
ation numbers. For the dynamic analysis evaluation, the goal will be to ensure that each
directive statement is tested at least once, and any directive violations are identified at the
correct location. By testing the recall of the tool, I will ensure that the method works cor-
rectly for the directives it was designed for and ensure that the tool can catch real world
bugs.

The second metric for evaluating the automated detection tool is precision. Precision
is defined as

precision =
o f correctly identi f ied violations

o f correctly identi f ied violations + # o f incorrectly identi f ied violations

Precision is an important metric for this tool because false error reports have been shown
to cause developers to lose trust in tools[57]. I will use 10 applications with correct in-
stances of state-based directives , as well as any correct instances of state-based directives
in the 100 faulty applications, to determine if the tool reports an error when an error does
not exist. The goal will be to incorrectly identify one or fewer incorrect directive viola-
tions static and dynamic analysis (marking a directive violation as undecidable will not

18

count as an incorrectly identification), meeting the false positive rates at Google [57] and
Coverity [7].

The third metric for evaluating the automated detection tool is generality. The goal of
the proposed technique is to create a technique that could apply to a significant portion
of state-based directives and across multiple frameworks. Thus the technique should be
evaluated on generality.

To determine how well technique applies across directives in the same framework,
I will evaluate the tool on how well the automatic approach to state-based directive vi-
olations generalizes on ten new directive violations that I will collect after creating the
tool. This approach will test the generality of the approach on a single framework. The
goal will be to automatically catch 80% of a set of ten collected directives. I will also
further investigate the directives that are not supported, which will inform possible tool
improvements.

To evaluate how well the technique will apply to other frameworks, I will test the
tool on ten state-based directives in another framework. If I do not have to rebuild the
static and dynamic infrastructure for a new framework (i.e., The analysis tools can be
reused across frameworks in the same language) then the tests will be conducted in an
automated manner. However, I am currently considering building the initial framework
infrastructure for Android, and due to differences in the Android Runtime from the Java
Virtual Machine, the infrastructure I am building may be limited to Android. In that case,
I will manually inspect ten state-based directives in another framework and determine
whether or not our technique could support those directives if the appropriate framework
tooling infrastructure was built. This framework will likely be the ROS framework, due
to prior work with the framework, but may be any framework with clearly documented
state-based directives and easy to collect examples of state-based directive violations. For
this experiment, I will collect ten state-based directives from other frameworks (the first
ten collected — not chosen on any other criteria) and verify that the tool could catch 50%
of the directives, assuming the tool contained the necessary framework-specific changes.
This evaluation would provide confidence that the technique could generalize to other
frameworks while also providing information on possible tool improvements.

The final goal of the evaluation is to determine that the tool will be useful for auto-
mated repair. While the usefulness of the tool cannot be completely evaluated without
an accompanying automated repair approach, I can evaluate if the tool will be able to
be used in a generate-and-validate automated repair approach [64]. Evaluating if the
tool is suitable for automated repair involves evaluating if the tool is able to localize the
fault [54], which is covered by the previous three evaluations, but also requires evaluating
the tool on the time required to run the analysis. In the proposed approach, the technique
will run the state-based directive violation detection tool multiple times, and thus, the
state-based directive violation detection tool must be able to identify the fault in a short
amount of time. To ensure that an automated approach can finish in a reasonable amount
of time, I will test that a prototype implementation of this tool can run 1000 or more times
in day. Due to the limitations of running real applications and the start up time of emu-
lators, this may not always be feasible for the dynamic analysis. If the tool meets these
minimum requirements, then the detection tool is likely suitable for use in an automated
repair approach. A full evaluation of the usefulness of the automated detection tool in an

19

automated repair context will be left until the supporting automated repair tool is built,
further discussed in Section 7.

6.3 Related Work

There are framework specification languages that have been created in prior work, each
with its own limitations for the case proposed here. SCL is a specification language and
analysis approach for checking method-level syntax patterns [27]. This approach is lim-
ited to interprocedural analysis, and would require significant adjustments to adapt the
language to the tool proposed here. Declarative event patterns is an approach to dynam-
ically check framework function call sequences specified in AspectJ [62]. This approach
does not perform static specification checks and is limited to specifications that can be en-
forced through traces (i.e., the directive “The Fragment must call setHasOptionsMenu(true) if the
application overrides onCreateOptionsMenu cannot be enforced with this specification approach‘’).
The specification language created by Jaspan [28] is the closest language that will be use-
ful for the tool. This language is also limited to specifications that can be enforced through
traces, but could be extended to cover other specifications. I currently lean towards using
a new language, since it avoids the specification overhead of a broader use case, but I am
considering using the specification language created by Jaspan as an alternative.

Other papers have created static [58], dynamic [14], and hybrid [8] typestate checkers.
However, they have not been applied directly to the framework context, where frame-
works may also change the state of objects of interest, increasing the complexity of the
analysis. Another similar work that enforces object protocols through static and dynamic
analysis in APIs was not applied to frameworks [23].

There is some prior work on typestates in frameworks, such as DroidStar, which auto-
matically finds a state machine for Android classes using user-specified callins and call-
backs [56]. While not focused on frameworks, Nanda et al. automatically collect typestate
specifications [51]. Other researchers have experimented with incorporating typestate as
a first-class component of a programming language [5]. The language approach to type-
state is similar to the proposed type specification in this proposal, but requires the over-
head of specifying the type states of all objects, and not just the most important ones. The
approach also requires developers to document how all methods change the typestate of
objects, instead of the methods that cause changes to the typestates of objects.

7 Automated repair of state-based directive violations

Once it is possible to automatically identify state-based directive violations, the next step
is to automatically repair these violations. Section 7.1 discusses the proposed repair ap-
proach, FrameFix, and 7.2 discusses the proposed evaluation of the technique. Section 7.3
then discusses other related automated repair approaches.

20

7.1 FrameFix design

The main insight of FrameFix is the state information gained from the violation detection
tool (Section 6) and the limited set of possible repairs of state-based directives will sig-
nificantly reduce the difficulty of automatically repairing state-based directive violations.
Prior research has shown that the time required to produce a repair is correlated with the
number of possible fault locations, which means that the fault locations identified by the
violation detection tool will help make finding the fix feasible [22]. The limited number
of possible repairs will further increase the change that the tool will produce a successful
repair.

Once the fault has been determined by the violation detection tool, FrameFix will use
a heuristic generate-and-validate strategy [64] to repair the fault, which consists of gen-
erating multiple possible repairs and then validating each repair against a set of speci-
fications. FrameFix will generate possible repairs using a template based approach [33].
These templates will either be created manually by the researcher, using knowledge of
possible fixes for different directive, or through an automated approach that looks for
patterns in fixes to past directive violations. This template strategy is likely to work be-
cause directives often have a limited number of ways to correctly implement the desired
functionality and the object protocols of software entities in the directives further limit
the valid number of method call, and thus possible repairs, in each state. Also, prior re-
search has created templates for framework application development and demonstrated
that these templates are useful in the context of frameworks [19]. If the template based ap-
proach does not work, then I will use a model-based repair approach [45]. This approach
uses information on common code elements (such as the number of if statements) to
guide proposed automatic repairs.

FrameFix will use the application specification information from two sources to deter-
mine if the fix is successful:

1. test cases that accompany the buggy applications, which will be used to determine
the required functionality of the application

2. the state-based directive violation tool, which will identify if the directive violation
has been removed.

A proposed repair will be considered a successful repair if it is able to pass the specifica-
tions from both sources. If the template based repair approach does not work, then the
tool could use a machine learning based repair approach [45] or a genetic programming
based approach [41].

7.2 FrameFix evaluation

FrameFix will be evaluated on both the accuracy of the proposed repairs, as well as the
generality of the repair technique. Accuracy, in this context, will be defined as changing
the application in a way that retains specified functionality while removing the detected
undesirable behavior. Generality will be defined as applying the technique to other state-
based directives in the current framework and in other frameworks.

21

It is important that the repair technique is accurate, because the technique should fix
the problem without otherwise changing functionality. If the proposed repairs did not
fix the directive violation or arbitrarily changed the functionality of the application, then
developers would not likely trust our tool. The technique should also generalize to other
applications with state-based framework directive faults, both within the framework and
in a new framework. If the tool could only work for the applications that were considered
when creating the tool, then the technique would only address a small set of directives in
a specific framework. Thus, the tool should be both accurate and general.

To evaluate the accuracy of FrameFix, I plan to first create a dataset of test programs,
reusing as many applications collected in Section 6.2 as possible (which means I will per-
form both evaluations on the same framework). The dataset will contain 20 programs
that violate at least 10 different state-based directives and contain a test suite, which I
will consider a specification of the required functionality of the application. If I need to
collect more applications than those previously collected for the evaluation in Section 6.2,
then I will use the same criteria to collect applications (specified in Section 6.1) with the
additional criteria that the application has an associated test suite.

The goal for the tool is to to fix 30% of the state-based programs in the dataset, where
a fix means that the proposed repair removes the state-based directive violation without
removing the required functionality encoded in the application’s test cases. While the
accuracy of techniques cannot be compared when using different datasets, previous work
has achieved a fix rate between about 20–50% on their chosen datasets, which indicates
that 30% will be a reasonable goal [45, 40, 41, 42].

I will evaluate the generality of the technique with six new applications with state-
based directive violations. If the state-based directive detection tool infrastructure sup-
ports running the analysis on programs in a different framework, then these six applica-
tions will contain state-based directive violations in another framework. If the state-based
directive violation tool infrastructure does not support another framework, then I will
evaluate the tool using six applications from the current framework that contain different
state-based directive violations than were in the original dataset. I will then manually
evaluate if the technique could apply to six applications from anther framework, which
will either be the ROS framework or another framework with clearly documented state-
based directives and easy to collect examples of state-based directive violations. In all
cases, the goal will be to fix, or possibly fix, two of the six applications, maintaining the
30% fix rate discussed previously.

As a final evaluation, I will compare the new technique to GenProg, a well-known
approach for general automatic program repair. This will demonstrate that FrameFix is
better suited for the state-based framework repairs that the tool is designed to fix. This
evaluation could also provide insight on possible future areas of improvement.

7.3 Related Work

Some examples of heuristic generate-and-validate techniques that I will use as inspira-
tion in this proposal are PAR [33], short for Pattern-based Automatic Program Repair,
and Prophet [45]. PAR is a template based repair technique, which applies a group of re-
pair templates to possible fault locations in the code. The authors created the templates by

22

manually defining repair templates (these templates are based on patterns in past repairs
and domain knowledge). Prophet automatically learns the common elements in a group
of past fixes (such as the number of if statements) and uses those common elements to
guide possible repairs. These approaches apply to fixing state-based directive, since this
approaches specialize in fixing problems with limited repair options, and state-based re-
pair has limited valid repairs in each state.

Recent work on the Android framework has categorized a large number of Android
exceptions and extracted common repair patterns for exceptions [20]. Some of these re-
pair patterns are likely to be useful when repairing state-based directive violations, such
as adding extra condition checks, while other state-based directive issues are not likely to
be covered by these repair patterns, such as fixing directive violations that do not cause
exceptions. Tan et al. [60] have also found common repair patterns for faults in Android
applications that lead to crashes, by manually creating repair templates from a set of fixes
for previously crashing Android applications, and may serve as a source of inspiration
for some of the framework repairs in this thesis. FrameFix is designed to be framework
independent and thus will handle a wider set of framework issues than those handled in
the Android repair technique. Another related approach involves fixing programs that
are specified with contracts [63]. A part of this approach involves dynamically building
an object behavior model (represented by object states) for passing tests cases and using
that to guide repairs. This approach does not support a static analysis approach to check-
ing directives and is limited in the states that are represented by the accessor functions of
the class (e.g., getFoo() function calls in Java).

8 Risks

As with any proposed project, there are possible risks that could cause changes to the
proposed thesis. In this section, I will cover a few possible risks and discuss possible mit-
igation strategies.

Risk: Lack of test cases with applications
The automated repair evaluation requires a specification of both the violated directive
and the functionality that the application is required to maintain after the proposed fix
to the directive violation. The required functionality of an application is often specified
through test cases that demonstrate the behavior of the application in successful condi-
tions. It may be difficult to collect enough applications with an associated test suite to
validate the repair technique. In this case, I could create a test suite for the applications
of interest that encodes the required functionality. If the bias produced by a single person
creating the automated repair technique and creating the test suite cause experts in the
field to lose confidence in the results of this evaluation, I could recruit another person to
create the test suite for those applications.

Risk: Running applications may require specific configurations that are not available
One risk of using real applications is that the applications may have specific requirements,
such as specific hardware, that are unavailable to someone who did not create the project

23

or may be difficult to obtain. This risk can be mitigated by collecting more applications
with state-based directive violations, since if more examples are collected, there is a better
chance that I will be able to collect enough applications that I can use with the resources
available. Another mitigation strategy would be to create applications that remove the
configuration-specific aspect of the applications while retaining the directive violations
of interest. I would create these applications in a similar approach to the applications
created based on questions off StackOverflow — alter a base application to contain the
problem of interest.

Risk: Identifying directive violations or repairing directive violations is more diffi-
cult than expected
The currently proposed evaluations depends on the ability of the proposed tools to iden-
tify directive violations and repair directive violations. If I am unable to identify and
repair a significant number of directive violations, then significant changes to the eval-
uation could be required. The first mitigation for this problem arises from the fact that
there are multiple strategies for identifying problems through static analysis and to gen-
erate possible application repairs. If the currently proposed techniques do not work, then
I will try other options, which will be selected when I have a better understanding of the
reasons the proposed approach is failing. If these other techniques do not work, then I
will analyze why this problem is more challenging than expected and use that analysis to
draw conclusions on the limitations of this problem space.

9 Schedule

Figure 10: Proposed timeline for the thesis.

24

Figure 10 shows the proposed schedule for this thesis with an expected graduation
date of January 2020. My current goal is to finish the tool for automatically detecting
directives by December 2018 and FrameFix by September 2019. At the time of writing
this proposal, the directive human study and part of the tools for identifying directive
violations work has been completed.

The estimate of the two uncompleted projects, as well as the thesis presentation pro-
cess, is broken down into the different components to provide insight on the time required
for each step of the process. For example, create tool infrastructure and find test apps are each
month-long tasks in the automatically repair direction violations project. This plan also
provides three months at the end of the plan for writing and presenting the thesis, as well
as any extra work that may arise during the dissertation process.

During this timeline, the work from these projects will be submitted to software engi-
neering conferences and journal such as the International Conference on Software Engi-
neering (ICSE), Foundations of Software Engineering (FSE), and Transactions on Software
Engineering (TSE).

10 Conclusion

I have demonstrated that developers face challenges with object states in frameworks and
I have proposed a feasible tool to address these problems. This thesis proposes three main
research projects:

1. a human study investigation into the challenges of debugging directives

2. a tool that can automatically detect application errors due to not following state-
based directives

3. FrameFix: a tool to automatically repair state-based directives in applications.

The proposed techniques will provide developers with a new approach to reducing
the challenges of framework programming. Another benefit of these techniques is that
they will allow developers to incrementally add and adjust the enforced state specifica-
tions, enabling the tools to adapt to changes in the framework and to problems that frame-
work application developers face. If extra work is put into making these tools available
to developers after the initial proof of concept, these tools would address a significant
problem when developing with frameworks and increase developer productivity.

25

References

[1] https://www.statista.com/statistics/266210/number-of-available-

applications-in-the-google-play-store/, Accessed Jan. 4th, 2018.

[2] stackoverflow.com, Accessed Nov. 20th, 2017.

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques, and Tools (2nd Ed.). Addison-Wesley Longman Publishing Co., Inc.,
2006. ISBN 0321486811.

[4] Jonathan Aldrich. The power of interoperability: Why objects are inevitable. In
Proceedings of the 2013 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, Onward! ’13, pages 101–116, 2013.

[5] Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks. Typestate-
oriented programming. In Object Oriented Programming Systems Languages and Appli-
cations, OOPSLA ’09, pages 1015–1022, 2009.

[6] Nels E. Beckman, Duri Kim, and Jonathan Aldrich. An empirical study of object pro-
tocols in the wild. In European Conference on Object-Oriented Programming, ECOOP’11,
pages 2–26, 2011. ISBN 978-3-642-22654-0.

[7] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines of
code later: Using static analysis to find bugs in the real world. Communications of the
ACM, 53(2):66–75, 2010.

[8] Eric Bodden. Efficient hybrid typestate analysis by determining continuation-
equivalent states. In International Conference on Software Engineering - Volume 1, ICSE
’10, pages 5–14, 2010.

[9] M. Bruch, M. Mezini, and M. Monperrus. Mining subclassing directives to improve
framework reuse. In Mining Software Repositories, MSR ’10, pages 141–150, 2010.

[10] Zack Coker and Munawar Hafiz. Program transformations to fix c integers. In Inter-
national Conference on Software Engineering, ICSE ’13, pages 792–801, 2013.

[11] Zack Coker, Michael Maass, Tianyuan Ding, Claire Le Goues, and Joshua Sunshine.
Evaluating the flexibility of the java sandbox. In Annual Computer Security Applica-
tions Conference, ACSAC 2015, pages 1–10, 2015.

[12] Zack Coker, David Gray Widder, Claire Le Goues, Christopher Bogart, and Joshua
Sunshine. Debugging famework applications: Benefits and challenges. Computing
Research Repository, https://arxiv.org/abs/1801.05366, 2017.

[13] James S. Collofello and Larry Cousins. Towards automatic software fault location
through decision-to-decision path analysis. In International Workshop on Managing
Requirements Knowledge, AFIPS ’87, pages 539–544, 12 1987.

1

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
stackoverflow.com

[14] Valentin Dallmeier, Andreas Zeller, and Bertrand Meyer. Generating fixes from ob-
ject behavior anomalies. In Automated Software Engineering, ASE ’09, pages 550–554,
2009.

[15] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. Qlose: Program repair with
quantitative objectives. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer
Aided Verification, pages 383–401. Springer International Publishing, 2016.

[16] Uri Dekel. Increasing awareness of delocalized information to facilitate API usage. PhD
thesis, Carnegie Mellon University, 2009.

[17] Uri Dekel and James D. Herbsleb. Improving api documentation usability with
knowledge pushing. In International Conference on Software Engineering, ICSE ’09,
pages 320–330, 2009.

[18] Mariangiola Dezani-Ciancaglini and Ugo de’Ligruoro. Sessions and session types:
An overview. Web Services and Formal Methods, 6194:1–28, 2010.

[19] George Fairbanks, David Garlan, and William Scherlis. Design fragments make us-
ing frameworks easier. In Object-oriented Programming Systems, Languages, and Appli-
cations, OOPSLA ’06, pages 75–88, 2006.

[20] Lingling Fan, Ting Su, Sen Chen, Meng Guozhu, Yang Liu, Lihua Xu, Geguang Pu,
and Zhendong Su. Large-scale analysis of framework-specific exceptions in android
apps. In International Conference on Software Engineering, ICSE ’18, pages 408–419,
2018.

[21] Mohamed Fayad and Douglas C. Schmidt. Object-oriented application frameworks.
Communications of the ACM, 40(10):32–38, October 1997.

[22] Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. A ge-
netic programming approach to automated software repair. In Genetic and Evolution-
ary Computation, GECCO ’09, pages 947–954, 2009.

[23] Madhu Gopinathan and Sriram K. Rajamani. Enforcing object protocols by combin-
ing static and runtime analysis. In Object-oriented Programming Systems Languages and
Applications, OOPSLA ’08, pages 245–260, 2008.

[24] Kihong Heo, Hakjoo Oh, and Kwangkeun Yi. Machine-learning-guided selectively
unsound static analysis. In International Conference on Software Engineering, ICSE ’17,
pages 519–529, 2017.

[25] Kohei Honda. Types for dyadic interaction. In International Conference on Concurrency
Theory, CONCUR ’93, pages 509–523, 1993.

[26] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous ses-
sion types. Journal of the ACM, 63(1):9:1–9:67, March 2016. ISSN 0004-5411.

2

[27] Daquing Hou and H. James Hoover. Using scl to specify and check design intent in
source code. IEEE Transactions on Software Engineering, 32(6):404–423, 2006.

[28] Ciera Jaspan and Jonathan Aldrich. Checking semantic usage of frameworks. In
Library-Centric Software Design, LCSD ’07, pages 1–10, 2007.

[29] Ciera Jaspan and Jonathan Aldrich. Checking framework interactions with relation-
ships. In European Conference on Object-Oriented Programming, ECOOP ’09, pages
27–51, 2009.

[30] Ciera Jaspan and Jonathan Aldrich. Are object protocols burdensome?: An empiri-
cal study of developer forums. In SIGPLAN Workshop on Evaluation and Usability of
Programming Languages and Tools, PLATEAU ’11, pages 51–56, 2011.

[31] Ralph E. Johnson. Frameworks = (components + patterns). Communications of the
ACM, 40(10):39–42, October 1997. ISSN 0001-0782.

[32] Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal of Object-
Oriented Programming, 1(2):22–35, June 1988.

[33] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic patch
generation learned from human-written patches. In International Conference on Soft-
ware Engineering, ICSE ’13, pages 802–811, 2013.

[34] Cody Kinneer, Zack Coker, Jiacheng Wang, David Garlan, and Claire Le Goues. Man-
aging uncertainty in self-adaptive systems with plan reuse and stochastic search. In
Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’18, pages 40–50,
2018.

[35] Andrew J. Ko and Brad A. Myers. Debugging reinvented: Asking and answering
why and why not questions about program behavior. In International Conference on
Software Engineering, ICSE ’08, pages 301–310, 2008.

[36] Andrew J. Ko, Brad A. Myers, and Htet Htet Aung. Six learning barriers in end-user
programming systems. In Visual Languages - Human Centric Computing, VLHCC ’04,
pages 199–206, 2004.

[37] Craig Larman. Applying UML and Patterns : An Introduction to Object-Oriented Anal-
ysis and Design and Iterative Development. Upper Saddle River, N.J. : Prentice Hall
Professional Technical Reference, Upper Saddle River, New Jersey, USA, 3rd ed edi-
tion, 2004. ISBN 0131489062.

[38] Joseph Lawrance, Christopher Bogart, Margaret Burnett, Rachel Bellamy, Kyle Rec-
tor, and Scott D. Fleming. How programmers debug, revisited: An information for-
aging theory perspective. IEEE Transations of Software Engingeering, 39(2):197–215,
February 2013.

3

[39] Tien-Duy B. Le and David Lo. Will fault localization work for these failures? an au-
tomated approach to predict effectiveness of fault localization tools. In International
Conference on Software Maintenance, ICSM ’13, pages 310–319, 2013.

[40] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
S3: Syntax- and semantic-guided repair synthesis via programming by examples. In
2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, pages
593–604, 2017.

[41] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. A
systematic study of automated program repair: Fixing 55 out of 105 bugs for $8
each. In International Conference on Software Engineering, ICSE ’12, pages 3–13, 2012.

[42] Claire Le Goues, Stephanie Forrest, and Westley Weimer. Current challenges in au-
tomatic software repair. Software Quality Journal, 21(3):421–443, 2013.

[43] A. Lienhard, T. Girba, and O. Nierstrasz. Specifying dynamic analyses by extending
language semantics. IEEE Transactions on Software Engineering, 38(3):694–706, May
2012.

[44] Fan Long and Martin Rinard. Staged program repair with condition synthesis. In
Joint Meeting of the European Software Engineering Conference and the Symposium on the
Foundations of Software Engineering, ESEC/FSE ’15, pages 166–178, 2015.

[45] Fan Long and Martin Rinard. Automatic patch generation by learning correct code.
In Principles of Programming Languages, POPL ’16, pages 298–312, New York, NY,
USA, 2016. ACM.

[46] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Directfix: Looking for sim-
ple program repairs. In International Conference on Software Engineering, ICSE ’15,
pages 448–458, 2015.

[47] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scalable multiline
program patch synthesis via symbolic analysis. In 38th International Conference on
Software Engineering, ICSE ’16, pages 691–701, New York, NY, USA, 2016.

[48] Martin Monperrus, Michael Eichberg, Elif Tekes, and Mira Mezini. What should
developers be aware of? An empirical study on the directives of api documentation.
Empirical Software Engineering, 17(6):703–737, 2012.

[49] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan. The design space of
bug fixes and how developers navigate it. IEEE Transactions on Software Engineering,
41(1):65–81, Jan 2015.

[50] B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon. Programmers are users too: Human-
centered methods for improving programming tools. Computer, 49(7):44–52, July
2016.

4

[51] Mangala Gowri Nanda, Christian Grothoff, and Satish Chandra. Deriving object
typestates in the presence of inter-object references. In Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA ’05, pages 77–96, 2005.

[52] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra.
Semfix: Program repair via semantic analysis. In 2013 International Conference on
Software Engineering, ICSE ’13, pages 772–781, 2013.

[53] Frolin S. Ocariza, Jr., Karthik Pattabiraman, and Ali Mesbah. Detecting inconsisten-
cies in javascript mvc applications. In International Conference on Software Engineering
- Volume 1, ICSE ’15, pages 325–335, Piscataway, NJ, USA, 2015. IEEE Press. ISBN
978-1-4799-1934-5. URL http://dl.acm.org/citation.cfm?id=2818754.2818796.

[54] Yuhua Qi, Xiaoguang Mao, Yan Lei, and Chengsong Wang. Using automated pro-
gram repair for evaluating the effectiveness of fault localization techniques. In In-
ternational Symposium on Software Testing and Analysis, ISSTA 2013, pages 191–201,
2013.

[55] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. The strength
of random search on automated program repair. In International Conference on Soft-
ware Engineering, ICSE ’14, pages 254–265, 2014.

[56] Arjun Radhakrishna, Nicholas Lewchenko, Shawn Meier, Sergio Mover, Kir-
shna Chaianya Sripada, Damien Zufferey, Bor-Yuh Evan Chang, and Černỳ. Droid-
star: Callback typestates for android classes. In International Conference on Software
Engineering, ICSE ’18, pages 1160–1170, 2018.

[57] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera
Jaspan. Lessons from building static analysis tools at google. Communications of the
ACM (CACM), 61 Issue 4:58–66, 2018.

[58] Paulo Salem. Practical programming, validation and verification with finite-state
machines: A library and its industrial application. In International Conference on Soft-
ware Engineering Companion, ICSE ’16, pages 51–60, 2016.

[59] R E Strom and S Yemini. Typestate: A programming language concept for enhancing
software reliability. IEEE Transactions on Software Engineering, 12(1):157–171, January
1986.

[60] Shin Hwei Tan, Zhen Dong, Xiang Gao, and Abhik Roychoudhury. Repairing
crashes in android apps. In International Conference on Software Engineering, ICSE
’18, pages 187–198, 2018.

[61] Iris Vessey. Expertise in debugging computer programs: A process analysis. Interna-
tional Journal of Man-Machine Studies, 23(5):459 – 494, 1985.

[62] Robert J. Walker and Kevin Viggers. Implementing protocols via declarative event
patterns. In Foundations of Software Engineering, FSE 04, pages 159–169, 2004.

5

http://dl.acm.org/citation.cfm?id=2818754.2818796

[63] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand Meyer, and
Andreas Zeller. Automated fixing of programs with contracts. In International Sym-
posium on Software Testing and Analysis, ISSTA ’10, pages 61–72, 2010.

[64] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. Auto-
matically finding patches using genetic programming. In International Conference on
Software Engineering, ICSE ’09, pages 364–374, 2009.

[65] Westley Weimer, Zachary P. Fry, and Stephanie Forrest. Leveraging program equiv-
alence for adaptive program repair: Models and first results. In Automated Software
Engineering, ASE ’13, pages 356–366, 2013.

[66] Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and Fu Song.
Spain: Security patch analysis for binaries towards understanding the pain and pills.
In International Conference on Software Engineering, ICSE ’17, pages 462–472, 2017.

[67] Andreas Zeller. Automated debugging: Are we close? Computer, 34(11):26–31, 2001.

[68] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and Har-
ald Gall. Analyzing APIs documentation and code to detect directive defects. In
International Conference on Software Engineering, ICSE ’17, pages 27–37, 2017.

6

	Abstract
	Introduction
	Background
	Relevant and Related Terminology
	Motivating Example

	Challenges of debugging directive violations
	Debugging Study Methodology
	Results from the human study on directive violations
	Related Work

	Brief overview of proposed tools
	Automatic detection of state-based directive violations
	Current results for the directive violation identification tool
	Proposed evaluation of tool for automatic detection of state-based directive violations
	Related Work

	Automated repair of state-based directive violations
	FrameFix design
	FrameFix evaluation
	Related Work

	Risks
	Schedule
	Conclusion

